Donor-chromophore-acceptor triads, (PTZ)2-Pt(bpy)-C60 and ((t)BuPTZ)2-Pt(bpy)-C60, along with their model compound, (Ph)2-Pt(bpy)-C60, have been synthesized and characterized; their photophysical and electrochemical properties have been studied, and the origin of the absorption and emission properties has been supported by computational studies. The photoinduced electron transfer reactions have been investigated using the femtosecond and nanosecond transient absorption spectroscopy. In dichloromethane, (Ph)2-Pt(bpy)-C60 shows ultrafast triplet-triplet energy transfer from the (3)MLCT/LLCT excited state within 4 ps to give the (3)C60* state, while in (PTZ)2-Pt(bpy)-C60 and ((t)BuPTZ)2-Pt(bpy)-C60, charge-separated state forms within 400 fs from the (3)MLCT/LLCT excited state with efficiency of over 0.90, and the total efficiency with the contribution of (3)C60* is estimated to be 0.99. Although the forward electron transfer reactions are very rapid, the charge-separated state recombines to the singlet ground state at a time of hundreds of nanoseconds because of the difference in spin multiplicity between the charge-separated state and the ground state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja5040073DOI Listing

Publication Analysis

Top Keywords

charge-separated state
12
donor-chromophore-acceptor triads
8
ptz2-ptbpy-c60 tbuptz2-ptbpy-c60
8
electron transfer
8
transfer reactions
8
3mlct/llct excited
8
state
8
excited state
8
ground state
8
design synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!