We characterize allelic and gene expression variation between populations of the Glanville fritillary butterfly (Melitaea cinxia) from two fragmented and two continuous landscapes in northern Europe. The populations exhibit significant differences in their life history traits, e.g. butterflies from fragmented landscapes have higher flight metabolic rate and dispersal rate in the field, and higher larval growth rate, than butterflies from continuous landscapes. In fragmented landscapes, local populations are small and have a high risk of local extinction, and hence the long-term persistence at the landscape level is based on frequent re-colonization of vacant habitat patches, which is predicted to select for increased dispersal rate. Using RNA-seq data and a common garden experiment, we found that a large number of genes (1,841) were differentially expressed between the landscape types. Hexamerin genes, the expression of which has previously been shown to have high heritability and which correlate strongly with larval development time in the Glanville fritillary, had higher expression in fragmented than continuous landscapes. Genes that were more highly expressed in butterflies from newly-established than old local populations within a fragmented landscape were also more highly expressed, at the landscape level, in fragmented than continuous landscapes. This result suggests that recurrent extinctions and re-colonizations in fragmented landscapes select a for specific expression profile. Genes that were significantly up-regulated following an experimental flight treatment had higher basal expression in fragmented landscapes, indicating that these butterflies are genetically primed for frequent flight. Active flight causes oxidative stress, but butterflies from fragmented landscapes were more tolerant of hypoxia. We conclude that differences in gene expression between the landscape types reflect genomic adaptations to landscape fragmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079591PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101467PLOS

Publication Analysis

Top Keywords

fragmented landscapes
20
continuous landscapes
16
fragmented continuous
12
fragmented
9
landscapes
9
landscape fragmentation
8
gene expression
8
glanville fritillary
8
butterflies fragmented
8
dispersal rate
8

Similar Publications

Extracting fragmented cropland is essential for effective cropland management and sustainable agricultural development. However, extracting fragmented cropland presents significant challenges due to its irregular and blurred boundaries, as well as the diversity in crop types and distribution. Deep learning methods are widely used for land cover classification.

View Article and Find Full Text PDF

Individual movements of bats are triggered by their life requirements, limited by their recognition of the environment and risks of moving, and mediated by habitat selection. Mining adds fragmentation and heterogeneity to landscapes, with poorly understood consequences to the life activities of the bats. Cave dwelling bats spend most of their life cycles within caves, and as they constantly forage in external landscapes, their contribution in the input of organic matter to the caves is of paramount importance to the subterranean biodiversity.

View Article and Find Full Text PDF

Diversity of ectoparasitic bat flies (Diptera, Hippoboscoidea) in inter-Andean valleys: evaluating interactions in the largest inter-Andean basin of Colombia.

Zookeys

December 2024

Grupo de Investigación GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia Universidad de Caldas Manizales Colombia.

Article Synopsis
  • Bat flies from the Streblidae and Nycteribiidae families have evolved specialized traits to feed on bats' blood and form specific associations with different bat species.
  • The Magdalena River basin in Colombia, which supports 98 bat species, reveals a diverse and modular interaction between bats and bat flies through field studies and literature review.
  • The study demonstrates medium specialization among bat flies, highlighting competitive relationships among species and suggesting that environmental conditions influence these dynamics in bat populations.
View Article and Find Full Text PDF

Assessment of temporal aggregation of Sentinel-2 images on seasonal land cover mapping and its impact on landscape metrics.

Environ Monit Assess

January 2025

Universidad Nacional de Córdoba - Facultad de Ciencias Agropecuarias, X5000HUA, Córdoba, Argentina.

Landscape metrics (LM) play a crucial role in fields such as urban planning, ecology, and environmental research, providing insights into the ecological and functional dynamics of ecosystems. However, in dynamic systems, generating thematic maps for LM analysis poses challenges due to the substantial data volume required and issues such as cloud cover interruptions. The aim of this study was to compare the accuracy of land cover maps produced by three temporal aggregation methods: median reflectance, maximum normalised difference vegetation index (NDVI), and a two-date image stack using Sentinel-2 (S2) and then to analyse their implications for LM calculation.

View Article and Find Full Text PDF

We present a methodology to develop the integrated climate change transition and physical risk assessment of industrial companies in Europe, Northern America and Australia. There is an increasingly important need for effective large-scale climate change risk assessment solutions with more governments aligning their company reporting regulations with the Task Force on Climate-related Financial Disclosures recommendations. In this paper, we measure key aspects of climate change risks of industrial firms on the globe and vice versa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!