Assessing the allergenic potential of molds found in water-damaged homes in a mouse model.

Inhal Toxicol

National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency , Research Triangle Park, NC , USA and.

Published: July 2014

Damp/moldy indoor environments, which have resulted from flooding events and may increase as a result of climate change, have been associated with asthma exacerbation. Certain molds found in significantly higher or lower concentrations in asthmatics' homes compared to control homes have been categorized as Group 1 (G1) and Group 2 (G2) molds, respectively. We have compared the allergic potential of selected G1/G2 molds to house dust mite (HDM) in a mouse model. BALB/c mice were exposed to mold (0-80 µg) or HDM (20 µg) extract by intratracheal aspiration either 4X over 4 weeks (allergenicity) or 1X (non-specific responses). Airflow limitation (methacholine challenge) was measured (Day 1) and serum and bronchoalveolar lavage fluid were collected (Day 2) after the final exposure. The G1 molds induced low-to-moderate responses and required higher doses to achieve antigen-specific IgE results similar to those induced by HDM. Compared to HDM responses, the G2 mold in this study required lower doses to induce a similar response. Acute exposure responses suggest some molds may exacerbate asthmatic responses. These studies demonstrate the differing capacities of molds to induce responses associated with allergic asthma, including differences in the threshold dose for allergy induction. Therefore, molds must be evaluated individually for allergic/asthmatic potential. These studies along with our previous studies with G1 (Stachybotrys chartarum)/G2 (Penicillium chrysogenum) molds suggest that the G1/G2 categorization is not indicative of allergic potential but they do not preclude this categorization's utility in determining unhealthy building dampness.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08958378.2014.919043DOI Listing

Publication Analysis

Top Keywords

molds
9
mouse model
8
allergic potential
8
responses
6
assessing allergenic
4
potential
4
allergenic potential
4
potential molds
4
molds water-damaged
4
water-damaged homes
4

Similar Publications

Molecular Identification and Antifungal Susceptibility of Fusarium spp. Clinical Isolates.

Mycoses

January 2025

Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

Background: Accurate identification of Fusarium species requires molecular identification. Treating fusariosis is challenging due to widespread antifungal resistance, high rates of treatment failure, and insufficient information relating antifungal susceptibility to the clinical outcome. Despite recent outbreaks in Mexico, there is limited information on epidemiology and antifungal susceptibility testing (AST).

View Article and Find Full Text PDF

Synthetic biology meets Aspergillus: engineering strategies for next-generation organic acid production.

World J Microbiol Biotechnol

January 2025

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China.

Organic acids constitute a vital category of chemical raw materials. They have extensive applications in industries such as polymers, food, and pharmaceuticals. Currently, industrial production predominantly relies on microbial fermentation.

View Article and Find Full Text PDF

Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Background: Functional foods and dairy products are gaining global attention due to their nutritional value and health-promoting characteristics. Lactic acid bacteria (LAB) are one of the promising components included in these products, thanks to their probiotic properties and ability to produce bioactive compounds such as bacteriocins. On the other hand, ectomycorrhizal wild mushrooms (truffles) are known for their ethnomycological importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!