A rise in inlet air temperature may lower the rate of heat dissipation from air cooled computing servers. This introduces a thermal stress to these servers. As a result, the poorly cooled active servers will start conducting heat to the neighboring servers and giving rise to hotspot regions of thermal stress, inside the data center. As a result, the physical hardware of these servers may fail, thus causing performance loss, monetary loss, and higher energy consumption for cooling mechanism. In order to minimize these situations, this paper performs the profiling of inlet temperature sensitivity (ITS) and defines the optimum location for each server to minimize the chances of creating a thermal hotspot and thermal stress. Based upon novel ITS analysis, a thermal state monitoring and server relocation algorithm for data centers is being proposed. The contribution of this paper is bringing the peak outlet temperatures of the relocated servers closer to average outlet temperature by over 5 times, lowering the average peak outlet temperature by 3.5% and minimizing the thermal stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988751 | PMC |
http://dx.doi.org/10.1155/2014/684501 | DOI Listing |
Sensors (Basel)
December 2024
China Construction Steel Engineer Co., Ltd., Shenzhen 518118, China.
Structural design usually adopts uniform temperature action. However, during the actual construction of the structure, the temperature field acting on the structure is inhomogeneous. Therefore, the simulation of the construction of statically indeterminate steel structures considering only the uniform temperature field cannot truly reflect the temperature action after structural molding and the evolution of the stress performance of the temporary stress system of structural construction.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Industrial Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy.
Turbomachinery engines face significant failure risks due to the combination of thermal loads and high-amplitude vibrations in turbine and compressor blades. Accurate stress distribution measurements are critical for enhancing the performance and safety of these systems. Blade tip timing (BTT) has emerged as an advanced alternative to traditional measurement methods, capturing blade dynamics by detecting deviations in blade tip arrival times through sensors mounted on the stator casing.
View Article and Find Full Text PDFPharmaceutics
November 2024
Merck Life Science KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany.
Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.
View Article and Find Full Text PDFPharmaceutics
November 2024
Merck Life Science KGaA, 64293 Darmstadt, Germany.
Background/objectives: This project aims to provide valuable insights into the formulation of orodispersible films (ODFs) for the delivery of PROTAC ARV-110. The primary objective of this drug delivery formulation is to enhance the solubility of PROTAC ARV-110, which faces significant challenges due to the low solubility of this active pharmaceutical ingredient, as it belongs to a molecular class that is considered to exceed the "Rule of Five".
Methods: We employed the concept of developing a rapidly disintegrating ODF to enhance the solubility of PROTAC ARV-110, utilizing polyvinyl alcohol as the polymer of choice.
Polymers (Basel)
December 2024
C & S Partner, Hanam Technovalley U1 Center, Hanam-si 12982, Republic of Korea.
A fully bio-based polyester polyol based on isosorbide (ISB) and dimer fatty acid (DA) was synthesized through esterification. An ISB-based polyester polyol (DIS) was developed to synthesize a bio-based polyurethane elastomer (PUE) with enhanced mechanical and self-healing properties. The rigid bicyclic structure of ISB improved tensile properties, while the urethane bonds formed between the hydroxyl groups in ISB and isocyanate exhibited reversible characteristics at elevated temperatures, significantly enhancing the self-healing performance of DIS-based PUE compared to the control PUE (self-healing efficiency: 98% for DIS-based PUE vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!