A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular pathways: deregulation of histone h3 lysine 27 methylation in cancer-different paths, same destination. | LitMetric

Molecular pathways: deregulation of histone h3 lysine 27 methylation in cancer-different paths, same destination.

Clin Cancer Res

Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

Published: October 2014

Methylation of lysine 27 on histone H3 (H3K27me), a modification associated with gene repression, plays a critical role in regulating the expression of genes that determine the balance between cell differentiation and proliferation. Alteration of the level of this histone modification has emerged as a recurrent theme in many types of cancer, demonstrating that either excess or lack of H3K27 methylation can have oncogenic effects. Cancer genome sequencing has revealed the genetic basis of H3K27me deregulation, including mutations of the components of the H3K27 methyltransferase complex PRC2 and accessory proteins, and deletions and inactivating mutations of the H3K27 demethylase UTX in a wide variety of neoplasms. More recently, mutations of lysine 27 on histone H3 itself were shown to prevent H3K27me in pediatric glioblastomas. Aberrant expression or mutations in proteins that recognize H3K27me3 also occur in cancer and may result in misinterpretation of this mark. In addition, due to the cross-talk between different epigenetic modifications, alterations of chromatin modifiers controlling H3K36me, or even mutations of this residue, can ultimately regulate H3K27me levels and distribution across the genome. The significance of mutations altering H3K27me is underscored by the fact that many tumors harboring such lesions often have a poor clinical outcome. New therapeutic approaches targeting aberrant H3K27 methylation include small molecules that block the action of mutant EZH2 in germinal center-derived lymphoma. Understanding the biologic consequences and gene expression pathways affected by aberrant H3K27 methylation may also lead to other new therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184969PMC
http://dx.doi.org/10.1158/1078-0432.CCR-13-2499DOI Listing

Publication Analysis

Top Keywords

h3k27 methylation
12
lysine histone
8
aberrant h3k27
8
mutations
6
methylation
5
h3k27me
5
h3k27
5
molecular pathways
4
pathways deregulation
4
histone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!