The motor system is tightly linked with perception and cognition. Recent studies have shown that even anticipated biophysical action costs associated with competing response options can be incorporated into decision-making processes. As a result, choices associated with high energy costs are less likely to be selected. However, some action costs may be harder to predict. For example, a person choosing among apples at a grocery store may change his or her mind suddenly about which apple to put into the cart. This change of mind may be reflected in motor output as the initial decision triggers a motor response toward a Granny Smith that is subsequently redirected toward a Red Delicious. In the present study, to examine how motor costs associated with changes of mind affect perceptual decision making, participants performed a difficult random dot–motion discrimination task in which they had to indicate the direction of motion by reaching to one of two response options. Although each response box was always equidistant from the starting position, the physical distance between the two response options was varied. We found that when the boxes were far apart from one another, and thus changes of mind incurred greater redirection motor costs, change-of-mind frequency decreased while latency to initiate movement increased. This occurred even when response box distance varied randomly from trial to trial and was cued only 1 s before each trial began. Thus, we demonstrated that observers can dynamically adjust perceptual decision-making processes to avoid high motor costs incurred by a change of mind.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528411 | PMC |
http://dx.doi.org/10.1167/14.8.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!