Both Raman and nuclear magnetic resonance (NMR) spectroscopies are valuable analytical techniques capable of providing mechanistic information and thereby providing insights into chemical processes, including catalytic reactions. Since both techniques are chemically sensitive, they yield not only structural information but also quantitative analysis. In this work, for the first time, the combination of the two techniques in a single experimental apparatus is reported. This entailed the design of a new experimental probe capable of recording simultaneous measurements on the same sample and/or system of interest. The individual datasets acquired by each spectroscopic method are compared to their unmodified, stand-alone equivalents on a single sample as a means to benchmark this novel piece of equipment. The application towards monitoring reaction progress is demonstrated through the evolution of the homogeneous catalysed metathesis of 1‑hexene, with both experimental techniques able to detect reactant consumption and product evolution. This is extended by inclusion of magic angle spinning (MAS) NMR capabilities with a custom made MAS 7 mm rotor capable of spinning speeds up to 1600 Hz, quantified by analysis of the spinning sidebands of a sample of KBr. The value of this is demonstrated through an application involving heterogeneous catalysis, namely the metathesis of 2-pentene and ethene. This provides the added benefit of being able to monitor both the reaction progress (by NMR spectroscopy) and also the structure of the catalyst (by Raman spectroscopy) on the very same sample, facilitating the development of structure-performance relationships.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4882317 | DOI Listing |
Adv Mater
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
Urinalysis, as a non-invasive and efficient diagnostic method, is very important but faces great challenges due to the complex compositions of urine and limited naturally occurring biomarkers for diseases. Herein, by leveraging the intrinsic absence of endogenous fluorinated interference, a strategy with the enzymatically activated assembly of synthetic fluorinated peptide for cholestatic liver injury (CLI) diagnosis and treatment through F nuclear magnetic resonance (NMR) urinalysis and efficient drug retention is developed. Specifically, alkaline phosphatase (ALP), overexpressed in the liver of CLI mice, triggers the assembly of fluorinated peptide, thus, directing the traffic and dynamic distribution of the synthetic biomarkers after administration, whereas CLI mice display much slower clearance of peptides through urine as compared with healthy counterparts.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China.
Background: Carotid endarterectomy (CEA) is widely used to treat carotid artery stenosis (CAS). However, the effects of CEA on unilateral CAS-induced cognitive impairment and the underlying mechanism remain poorly understood.
Methods And Results: Thirteen patients diagnosed with unilateral severe CAS underwent pre- and post-CEA assessments, including fluoro-2-deoxy-d-glucose positron emission tomography/magnetic resonance imaging, cognitive assessments, and routine blood tests before and after CEA.
Nucleic Acids Res
January 2025
Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
i-Motifs (iMs) are quadruplex nucleic acid conformations that form in cytosine-rich regions. Because of their acidic pH dependence, iMs were thought to form only in vitro. The recent development of an iM-selective antibody, iMab, has allowed iM detection in cells, which revealed their presence at gene promoters and their cell cycle dependence.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!