Infrared absorption of positively charged polarons in conjugated polymer chains and π-stacked aggregates is investigated theoretically, employing a Holstein-based Hamiltonian which treats electronic coupling, electron-vibrational coupling, and disorder on equal footing. The spectra evaluated from the Hamiltonian expressed in a one- and two-particle basis set are essentially exact, insofar as the main, aromatic-quinoidal vibrational mode is treated fully nonadiabatically. Diagonal and off-diagonal ("paracrystalline") disorder are resolved along the polymer axis (x) and the aggregate stacking axis (y). Disorder along the polymer axis selectively attenuates the x-polarized spectrum, which is dominated by the polaron peak P1. Disorder along the stacking axis selectively attenuates the y-polarized spectrum, which is dominated by the lower-energy charge-transfer peak, DP1. Calculated spectra are in excellent agreement with the measured induced-absorption and charge-modulation spectra, reproducing the peak positions and relative peak intensities within a line shape rich in vibronic structure. Our nonadiabatic approach predicts the existence of a weak, x-polarized peak P0, slightly blueshifted from DP1. The peak is intrinsic to single polymer chains and appears in a region of the spectrum where narrow infrared active vibrational modes have been observed in nonaggregated conjugated polymers. The polaron responsible for P0 is composed mainly of two-particle wave functions and cannot be accounted for in the more conventional adiabatic treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4882696 | DOI Listing |
J Colloid Interface Sci
April 2025
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China. Electronic address:
Triblock Pluronics of polyoxyethylene (PEO) and polyoxypropylene (PPO) are identified as competent suppressors for copper (Cu) electroplating in advanced electronics manufacturing. However, the specific interfacial roles of PEO and PPO blocks in Pluronic suppressors, are not yet fully understood, which is crucial for the rational design of effective suppressors. Herein, the influences of composition and block arrangement of such Pluronics on the inhibition against Cu plating are systematically investigated.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were employed to elucidate the structure-activity correlations of the peptide@nano AuNP systems.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!