The glass transition pressure at room temperature, pg, of six ionic liquids based on 1-alkyl-3-methylimidazolium cations and the anions [BF4](-), [PF6](-), and bis(trifluromethanesulfonyl)imide, [NTf2](-), has been obtained from the pressure dependence of the bandwidth of the ruby fluorescence line in diamond anvil cells. Molar volume, Vm(pg), has been estimated by a group contribution model (GCM) developed for the ionic liquids. A density scaling relation, TV(γ), has been considered for the states Vm(pg, 295 K) and Vm(Tg, 0.1 MPa) using the simplifying condition that the viscosity at the glass transition is the same at pg at room temperature and at atmospheric pressure at Tg. Assuming a constant γ over this range of density, a reasonable agreement has been found for the γ determined herein and that of a previous density scaling analysis of ionic liquids viscosities under moderate conditions. Further support for the appropriateness of extrapolating the GCM equation of state to the GPa pressure range is provided by comparing the GCM and an equation of state previously derived in the power law density-scaling regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4885361 | DOI Listing |
PLoS One
January 2025
Department of Applied Chemistry, National Defense Academy, Kanagawa, Japan.
Bacterial endospores are ubiquitous and are responsible for various human infections. Recently, we reported that an ionic liquid (IL)-based sample preparation method (named pTRUST) facilitated highly efficient shotgun analysis of the Bacillus subtilis spore proteome in trace samples. In this study, we evaluated the efficiency and applicability of the pTRUST technology using three different spore preparations: one purified from the closely related subspecies B.
View Article and Find Full Text PDFChemSusChem
January 2025
Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italia.
Valorization of carbohydrate-rich biomass by conversion into industrially relevant products is at the forefront of research in sustainable chemistry. In this work, we studied the inulin conversion into 5-hydroxymethylfurfural, in deep eutectic solvents, in the presence of acidic task-specific ionic liquids as catalysts. We employed aliphatic and aromatic ionic liquids as catalysts, and choline chloride-based deep eutectic solvents bearing glycols or carboxylic acids, as solvents.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Nagano, Japan.
Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into NO3--N, which is absorbed by crops. However, some nitrogen is converted to nitrous oxide (NO), a greenhouse gas with a warming potential about 300-times greater than carbon dioxide (CO).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:
Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA.
Ionogels have attracted considerable attention as versatile materials due to their unique ionic conductivity and thermal stability. However, relatively weak mechanical performance of many existing ionogels has hindered their broader application. Herein, we develop robust, tough, and impact-resistant mechanically interlocked network ionogels (IGMINs) by incorporating ion liquids with mechanical bonds that can dissipate energy while maintain structural stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!