Phase locking of two limit cycle oscillators with delay coupling.

Chaos

Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.

Published: June 2014

Mutual phase locking in the system of two limit cycle oscillators with delay coupling is studied. Conditions of phase locking are derived as a result of analysis of a generalized Adler equation. The analytical results are compared with numerical simulation. Depending on the phase shift of the coupling signal propagating between the two oscillators, either in-phase or anti-phase mode of synchronization may arise. The number of possible modes of synchronization increases with the delay time.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4881837DOI Listing

Publication Analysis

Top Keywords

phase locking
12
limit cycle
8
cycle oscillators
8
oscillators delay
8
delay coupling
8
phase
4
locking limit
4
coupling mutual
4
mutual phase
4
locking system
4

Similar Publications

Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter.

View Article and Find Full Text PDF

Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.

View Article and Find Full Text PDF

Neural correlates of perceptual plasticity in the auditory midbrain and thalamus.

J Neurosci

January 2025

Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742.

Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood.

View Article and Find Full Text PDF

Continuum limit of the adaptive Kuramoto model.

Chaos

January 2025

Centre for Mathematical Science, Lund University, Märkesbacken 4, 223 62 Lund, Sweden.

We investigate the dynamics of the adaptive Kuramoto model with slow adaptation in the continuum limit, N→∞. This model is distinguished by dense multistability, where multiple states coexist for the same system parameters. The underlying cause of this multistability is that some oscillators can lock at different phases or switch between locking and drifting depending on their initial conditions.

View Article and Find Full Text PDF

Background: The study of the involvement of the cerebellum in learning and memory has become one of the recent hot topics in the field of cognitive neuroscience. Transcranial magnetic stimulation (TMS) of the cerebellum has gained increasing interest in the treatment of cognition-related disorders, making it necessary to determine the optimal parameters for cerebellar TMS. In this study, we aim to explore the effects of different frequencies of cerebellar repetitive TMS (rTMS) on working memory regulation and the associated electrophysiological changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!