We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly "twisted" in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4870259DOI Listing

Publication Analysis

Top Keywords

twisted states
12
partially coherent
8
phase oscillators
8
natural frequencies
8
coherent twisted
4
states
4
states arrays
4
arrays coupled
4
coupled phase
4
oscillators consider
4

Similar Publications

Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge.

View Article and Find Full Text PDF

Application of a near-infrared viscosity-responsive fluorescent probe for lysosomal targeting in fatty liver mice.

Bioorg Chem

January 2025

Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007 Qinghai, China; State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China. Electronic address:

Viscosity is a fundamental property in biological systems, influencing organelle function and molecular diffusion. Abnormal viscosity is associated with diseases such as metabolic disorders, neurodegeneration, and cancer. Lysosomes, central to cellular degradation and recycling, are sensitive to viscosity changes, which can disrupt enzymatic activity and cellular homeostasis.

View Article and Find Full Text PDF

Lattice-mismatched and twisted multi-layered materials for efficient solar cells.

J Phys Condens Matter

January 2025

Physics, Florida State University, 612 Keen Building, Florida State University, Tallahassee, Florida, 32306, UNITED STATES.

We argue that alternating-layer structures of lattice mismatched or misaligned (twisted) atomically-thin layers should be expected to be more efficient absorbers of the broad-spectrum of solar radiation than the bulk material of each individual layer. In such mismatched layer-structures the conduction and valence bands of the bulk material, split into multiple minibands separated by minigaps confined to a small-size emerging Brillouin zone due to band-folding. We extended the Shockley-Queisser approach to calculate the photovoltaic efficiency for a band split into minibands of bandwidth $\Delta E$ and mini-gaps $\delta G$ to model the case when such structures are used as solar cells.

View Article and Find Full Text PDF

The low-frequency resistance fluctuations, or noise, in electrical resistance not only set a performance benchmark in devices but also form a sensitive tool to probe nontrivial electronic phases and band structures in solids. Here, we report the measurement of such noise in the electrical resistance in twisted bilayer graphene (tBLG), where the layers are misoriented close to the magic angle (θ ∼ 1°). At high temperatures ( ≳ 60-70 K), the power spectral density (PSD) of the fluctuation inside the low-energy moiré bands is predominantly ∝1/, where is the frequency, being generally lowest close to the magic angle, and can be well-explained within the conventional McWhorter model of the '1/ noise' with trap-assisted density-mobility fluctuations.

View Article and Find Full Text PDF

Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!