A vast amount of investigation has centered on how the endothelium and smooth muscle communicate. From this evidence, myoendothelial junctions have emerged as critical anatomical structures to regulate heterocellular cross talk. Indeed, there is now evidence that the myoendothelial junction serves as a signaling microdomain to organize proteins used to facilitate vascular heterocellular communication. This review highlights the evolving role of myoendothelial junctions in the context of vascular cell-cell communication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103062 | PMC |
http://dx.doi.org/10.1152/physiol.00042.2013 | DOI Listing |
Vascul Pharmacol
January 2025
Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy. Electronic address:
The appropriate regulation of peripheral vascular tone is crucial for maintaining tissue perfusion. Myoendothelial junctions (MEJs), specialized connections between endothelial cells and vascular smooth muscle cells, are primarily located in peripheral resistance vessels. Therefore, these junctions, with their key membrane proteins, play a pivotal role in the physiological control of relaxation-contraction coupling in resistance arterioles, mainly mediated through endothelium-derived hyperpolarization (EDH).
View Article and Find Full Text PDFCirculation
January 2025
Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD.
Background: Severe malaria is associated with impaired nitric oxide (NO) synthase (NOS)-dependent vasodilation, and reversal of this deficit improves survival in murine models. Malaria might have selected for genetic polymorphisms that increase endothelial NO signaling and now contribute to heterogeneity in vascular function among humans. One protein potentially selected for is alpha globin, which, in mouse models, interacts with endothelial NOS (eNOS) to negatively regulate NO signaling.
View Article and Find Full Text PDFMicrovasc Res
November 2024
Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China. Electronic address:
Although the mouse mesenteric artery is widely used as a model of resistance vessels, it is unknown which order branch is the best representative and if there is a heterogeneity of vascular activity in different orders. We systematically compared the vasorelaxation between the mouse mesenteric artery's first- and second-order branches. The first- and second-order branches of the mesenteric artery (lumen diameter of >300 μm and 179.
View Article and Find Full Text PDFCell Calcium
July 2024
Physics Institute, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, S.L.P, México. Electronic address:
The smooth muscle-walled blood vessels control blood pressure. The vessel lumen is lined by an endothelial cell (ECs) layer, interconnected to the surrounding smooth muscle cells (SMCs) by myoendothelial gap junctions. Gap junctions also maintain homo-cellular ECs-ECs and SMCs-SMCs connections.
View Article and Find Full Text PDFFood Funct
April 2024
Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Baronissi, SA, 84081, Italy.
Until now, the beneficial vascular properties of Hop reported in the literature have been mainly attributed to specific compound classes, such as tannins and phenolic acids. However, the potential vascular action of a Hop subfraction containing a high amount of α or β acids remains completely understood. Therefore, this study aims to investigate the vascular effects of the entire Hop extract and to fraction the Hop extract to identify the main bioactive vascular compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!