Dynamics of self-threading ring polymers in a gel.

Soft Matter

Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK.

Published: August 2014

We study the dynamics of ring polymers confined to diffuse in a background gel at low concentrations. We do this in order to probe the inter-play between topology and dynamics in ring polymers. We develop an algorithm that takes into account the possibility that the rings hinder their own motion by passing through themselves, i.e. "self-threading". Our results suggest that the number of self-threadings scales extensively with the length of the rings and that this is substantially independent of the details of the model. The slowing down of the rings' dynamics is found to be related to the fraction of segments that can contribute to the motion. Our results give a novel perspective on the motion of ring polymers in a gel, for which a complete theory is still lacking, and may help us to understand the irreversible trapping of ring polymers in gel electrophoresis experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4sm00619dDOI Listing

Publication Analysis

Top Keywords

ring polymers
20
polymers gel
12
dynamics ring
8
ring
5
polymers
5
dynamics
4
dynamics self-threading
4
self-threading ring
4
gel
4
gel study
4

Similar Publications

Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far.

View Article and Find Full Text PDF

Studies on Square Wave and Cyclic Voltammetric Behavior of 1,2- and 1,4-Dihydroxybenzenes and Their Derivatives in Acetic Acid, Ethyl Acetate and Mixtures of the Two.

Methods Protoc

December 2024

Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, H-7624 Pécs, Hungary.

An electrochemical investigation of 1,2- and 1,4-dihydroxybenzenes was carried out with platinum macro- and microelectrodes using square wave and cyclic voltammetry techniques. Furthermore, the effect of the two solvents-acetic acid and ethyl acetate-was compared. When using square wave voltammetry, signals only appeared at lower frequencies and only when the supporting electrolyte was in excess, as expected due to the relatively low permittivity of the used solvents.

View Article and Find Full Text PDF

Three triazine-based conjugated porous polymers (CPPs) are synthesized via a Pd-catalyzed Suzuki-Miyaura coupling reaction between derivatives of 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine (TTT) and 2,4,6-triphenyl-1,3,5-triazine (TPT). Photocatalysis experiments demonstrate that the hydrogen evolution rate (HER) of ThTh-CPP (homopolymer of TTT) reach an exceptional 46.4 mmol g⁻¹ h⁻¹ without co-catalysts, surpassing ThPh-CPP (8.

View Article and Find Full Text PDF

Tailoring the Reprocessability of Thiol-Ene Networks through Ring Size effects.

Angew Chem Int Ed Engl

December 2024

Ghent University: Universiteit Gent, Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.

Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers.

View Article and Find Full Text PDF

Computational techniques have been used to analyze the molecules of 10-hydroxycoronahydine (HC) and voacangine hydroxyindolenine (VH) molecules with the aim of studying the effect of base and temperature on their interaction mechanisms during synthesis green magnetite nanoparticles. Density functional theory (DFT) descriptors such as: energy gap, overall reactivity descriptors, dipole moment and adsorption energy have all been explored in depth to understand the nature of the interaction. The DFT results showed that the molecules studied (HC and VH) are interactive and stable in an aqueous medium, due to the fact that these molecules have free electronic doublets on the nitrogen atom and the bond of the aromatic ring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!