Objective: Studies have shown that the inability of adipose tissue to properly expand during the obese state or respond to insulin can lead to metabolic dysfunction. Artemisia is a diverse group of plants that has a history of medicinal use. The aim of this study was to examine the ability of ethanolic extracts of Artemisia scoparia (SCO) and Artemisia santolinifolia (SAN) to modulate adipocyte development in cultured adipocytes and white adipose tissue (WAT) function in vivo using a mouse model of diet-induced obesity.

Method: Adipogenesis was assessed using Oil Red O staining and immunoblotting. A nuclear receptor specificity assay was used to examine the specificity of SCO- and SAN-induced PPARγ activation. C57BL/6J mice, fed a high-fat diet, were gavaged with saline, SCO, or SAN for 2 wk. Whole-body insulin sensitivity was examined using insulin tolerance tests. WAT depots were assessed via immunoblotting for markers of insulin action and adipokine production.

Results: We established that SCO and SAN were highly specific activators of PPARγ and did not activate other nuclear receptors. After a 1-wk daily gavage, SCO- and SAN-treated mice had lower insulin-induced glucose disposal rates than control mice. At the end of the 2-wk treatment period, SCO- and SAN-treated mice had enhanced insulin-responsive Akt serine-473 phosphorylation and significantly decreased monocyte chemotactic protein-1 levels in visceral WAT compared with control mice; these differences were depot specific. Moreover, plasma adiponectin levels were increased following SCO treatment.

Conclusion: Overall, these studies demonstrate that extracts from two Artemisia species can have metabolically favorable effects on adipocytes and WAT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082805PMC
http://dx.doi.org/10.1016/j.nut.2014.02.013DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
insulin sensitivity
8
extracts artemisia
8
sco san
8
sco- san-treated
8
san-treated mice
8
control mice
8
mice
6
artemisia
5
insulin
5

Similar Publications

In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.

View Article and Find Full Text PDF

The Interplay Between Gut Microbiota, Adipose Tissue, and Migraine: A Narrative Review.

Nutrients

January 2025

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy.

Background: Migraine, a prevalent neurovascular disorder, affects millions globally and is associated with significant morbidity. Emerging evidence suggests a crucial role of the gut microbiota and adipose tissue in the modulation of migraine pathophysiology, particularly through mechanisms involving neuroinflammation and metabolic regulation.

Material And Methods: A narrative review of the literature from 2000 to 2024 was conducted using the PubMed database.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation.

View Article and Find Full Text PDF

Background: Although several studies have demonstrated a link between obesity and cognitive function, the majority have primarily utilized body mass index (BMI) and waist circumference, ignoring the distribution of body fat. Evidence regarding the association of metabolic score for visceral fat (METS-VF), a proposed measurement for visceral adipose tissue (VAT), with cognitive function remains limited. We mainly aimed to investigate this association in older adults in the United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!