Background: ent-Sauchinone is a polyphenolic compound found in plants belonging to the lignan family. ent-Sauchinone has been shown to modulate the expression of inflammatory factors through the nuclear factor-kappa B (NF-κB) signaling pathway. It is well known that neuroinflammation is associated with amyloidogenesis. Thus, in the present study, we investigated whether ent-Sauchinone could have anti-amyloidogenic effects through the inhibition of NF-κB pathways via its anti-inflammatory property.
Methods: To investigate the potential effect of ent-Sauchinone on anti-neuroinflammation and anti-amyloidogenesis in in vitro studies, we used microglial BV-2 cells and cultured astrocytes treated with ent-Sauchinone (1, 5, and 10 μM) for 24 hours. For the detection of anti-neuro-inflammatory responses, reative oxygen species (ROS) and Nitric oxide (NO) generation and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were measured with assay kits and western blotting. β-secretase and β-secretase activities and β-amyloid levels were determined for measuring the anti-amyloidogenic effects of ent-Sauchinone by enzyme assay kits. NF-κB and STAT3 signals were detected with electromobility shift assay (EMSA) to study the related signaling pathways. The binding of ent-Sauchinone to STAT3 was evaluated by a pull-down assay and by a docking model using Autodock VINA software (Hoover's Inc., Texas, United states).
Results: ent-Sauchinone (1, 5, and 10 μM) effectively decreased lipopolysaccharide (LPS)-(1 μg/ml) induced inflammatory responses through the reduction of ROS and NO generations and iNOS and COX-2 expressions in cultured astrocytes and microglial BV-2 cells. ent-Sauchinone also inhibited LPS-induced amyloidogenesis through the inhibition of β-secretase and β-secretase activity. NF- κB amyloid and STAT3, critical transcriptional factors regulating not only inflammation but also amyloidogenesis, were also inhibited in a concentration dependent manner by ent-Sauchinone by blocking the phosphorylation of I κB and STAT3 in cultured astrocytes and microglial BV-2 cells. The docking model approach showed that ent-Sauchinone binds to STAT3, and the employment of a STAT3 inhibitor and siRNA reversed ent-Sauchinone-induced inhibition NF-κB activation and Aβ generation.
Conclusions: These results indicated that ent-Sauchinone inhibited neuroinflammation and amyloidogenesis through the inhibition of STAT3-mediated NF-κB activity, and thus could be applied in the treatment of neuro-inflammatory diseases, including Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090659 | PMC |
http://dx.doi.org/10.1186/1742-2094-11-118 | DOI Listing |
Brain Res
December 2024
Department of Urology Surgery, People's Hospital of Shenzhen, Shenzhen City, Guangdong Province, China.
Epilepsia
December 2024
Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.
View Article and Find Full Text PDFBioprocess Biosyst Eng
December 2024
Department of Biological Engineering, Inha University, 100 Inha-Ro, Nam-Gu, Incheon, 22212, Republic of Korea.
Experimental models for exploring abnormal brain blood vessels, including ischemic stroke, are crucial in neuroscience; recently, significant attention has been paid to artificial tissues through tissue engineering. Nanofibers, although commonly used as tissue engineering scaffolds, undergo structural deformations easily, making it challenging to create uniform tissue, especially for the smallest-diameter ones such as perforating arteries. This study focused on the development of a platform capable of reconstructing structurally and functionally replicated perforating arteries.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan. Electronic address:
The deposition of aggregated amyloid β (Aβ) is considered as a key factor for Alzheimer's Disease (AD). Previously, we demonstrated that a carboxylated Zn-phthalocyanine (ZnPc) inhibits Aβ fibril formation, consequently protects neurons in culture. This study evaluated the effects of ZnPc on pathological changes in an AD mouse model (J20).
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA. Electronic address:
Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETB) signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!