Investigation into an outbreak of encephalomyelitis caused by a neuroinvasive porcine sapelovirus in the United Kingdom.

Vet Microbiol

Virology Department, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom. Electronic address:

Published: August 2014

AI Article Synopsis

  • An outbreak of neurological disease in grower pigs caused ataxia and paraparesis, showing signs of spinal cord damage weeks after weaning.
  • Pathological findings revealed significant inflammation and neuron damage in the spinal cords, with molecular analysis identifying a virus related to porcine sapelovirus (PSV) as the likely culprit.
  • This study marks the first confirmed case of polioencephalomyelitis in pigs due to a neuroinvasive PSV in the UK, with the virus showing high nucleotide homology to others in its family.

Article Abstract

An outbreak of neurological disease in grower pigs characterised by ataxia and paraparesis was investigated in this study. The outbreak occurred 3-4 weeks post weaning in grower pigs which displayed signs of spinal cord damage progressing to recumbency. Pathology in the affected spinal cords and to a lesser extent in the brainstem was characterised by pronounced inflammation and neuronophagia in the grey matter. Molecular investigation using a pan-virus microarray identified a virus related to porcine sapelovirus (PSV) in the spinal cord of the two affected pigs examined. Analysis of 802 nucleotides of the virus polymerase gene showed the highest homology with those of viruses in the genus Sapelovirus of Picornaviridae. This PSV, strain G5, shared 91-93%, 67-69% and 63% nucleotide homology with porcine, simian and avian sapeloviruses, respectively. The nucleotide homology to other members of the Picornaviridae ranged from 41% to 62%. Furthermore, viral antigen was detected and co-localised in the spinal cord lesions of affected animals by an antibody known to react with PSV. In conclusion, clinical and laboratory observations of the diseased pigs in this outbreak are consistent with PSV-G5 being the causative agent. To the best of the authors' knowledge, this is the first unequivocal report of polioencephalomyelitis in pigs by a neuroinvasive PSV in the United Kingdom.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2014.06.001DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
porcine sapelovirus
8
united kingdom
8
grower pigs
8
nucleotide homology
8
pigs
5
investigation outbreak
4
outbreak encephalomyelitis
4
encephalomyelitis caused
4
caused neuroinvasive
4

Similar Publications

Background: Awareness of the characteristics of glial fibrillary acidic protein autoantibody (GFAP-IgG) associated myelitis facilitates early diagnosis and treatment. We explored features in GFAP-IgG myelitis and compared them with those in myelitis associated with aquaporin-4 IgG (AQP4-IgG) and myelin oligodendrocyte glycoprotein IgG (MOG-IgG).

Methods: We retrospectively reviewed data from patients with GFAP-IgG myelitis at the First Affiliated Hospital of Zhengzhou University and Henan Children's Hospital from May 2018 to May 2023.

View Article and Find Full Text PDF

Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system.

BMC Neurosci

January 2025

Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.

Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.

View Article and Find Full Text PDF

Altered 3D genome reorganization mediates precocious myeloid differentiation of aged hematopoietic stem cells in inflammation.

Sci China Life Sci

December 2024

Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

Inflammation is a driving force of hematopoietic stem cells (HSCs) aging, causing irreversible exhaustion of functional HSCs. However, the underlying mechanism of HSCs erosion by inflammatory insult remains poorly understood. Here, we find that transient LPS exposure primes aged HSCs to undergo accelerated differentiation at the expense of self-renewal, leading to depletion of HSCs.

View Article and Find Full Text PDF

Study Design: Experimental Animal Study.

Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.

Setting: University of Florida laboratory in Gainesville, USA.

View Article and Find Full Text PDF

Vimentin Inhibits Neuronal Apoptosis After Spinal Cord Injury by Enhancing Autophagy.

CNS Neurosci Ther

January 2025

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.

Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!