The arbuscular mycorrhiza (AM) is the symbiont formed by the host plant and the arbuscular mycorrhizal fungi (AMF). The transfer and metabolism of C and N in the symbiosis plays an important role in keeping nutrient balance and resource reallocation between the host plant and the fungi. The carbohydrates produced by plant photosynthesis are transferred to the fungi, where they are metabolized as materials and energy used for fungal spore germination, mycelium growth and uptake of nitrogen and other nutrients. At the same time, N is transferred and reallocated from the fungi to the host plant, where the final released ammonium is used for plant growth. Accordingly, we reviewed the current progress in C and N transfer and metabolism in the AM symbiosis, and the crosstalk between them as well as some key issues to elucidate the mechanism of the interaction between C and N transport in the symbiosis, so as to provide the theory foundation for the application of AM in sustainable agriculture and ecosystem.

Download full-text PDF

Source

Publication Analysis

Top Keywords

host plant
12
arbuscular mycorrhizal
8
transfer metabolism
8
metabolism symbiosis
8
plant
5
[metabolism interaction
4
interaction arbuscular
4
mycorrhizal symbiosis]
4
symbiosis] arbuscular
4
arbuscular mycorrhiza
4

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Plants host a range of DNA elements capable of self-replication. These molecules, usually associated to the activity of transposable elements or viruses, are found integrated in the genome or in the form of extrachromosomal DNA. The activity of these elements can impact genome plasticity by a variety of mechanisms, including the generation of structural variants, the shuffling of regulatory or coding DNA sequences across the genome, and DNA endoduplication.

View Article and Find Full Text PDF

Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations.

View Article and Find Full Text PDF

Herbivorous insects need to cope with changing host plant biochemistry caused by abiotic and biotic impacts, to meet their dietary requirements. Larvae of the multivoltine European grapevine moth Lobesia botrana, one of the main insect pests in viticulture, feed on both flowers and berries. The nutritional value and defence compounds of these organs are changing with plant phenology and are affected by climate change which may accordingly alter plant-insect interactions.

View Article and Find Full Text PDF

The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!