Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma.

Nanomedicine

Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Université de Lyon, Université Lyon 1, Oullins, France; Unité Médicale d'Oncologie Moléculaire et Transfert, Hospices Civils de Lyon, Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Lyon-Sud, Pierre Bénite, France. Electronic address:

Published: January 2015

Gadolinium based nanoparticles (GBNs, diameter 2.9±0.2nm), have promising biodistribution properties for theranostic use in-vivo. We aimed at demonstrating the radiosensitizing effect of these GBNs in experimental radioresistant human head and neck squamous cell carcinoma (SQ20B, FaDu and Cal33 cell lines). Combining 0.6mM GBNs with 250kV photon irradiation significantly decreased SQ20B cell survival, associated with an increase in non-reparable DNA double-strand breaks, the shortening of G2/M phase blockage, and the inhibition of cell proliferation, each contributing to the commitment of late apoptosis. Similarly, radiation resistance was overcome for SQ20B stem-like cells, as well as for FaDu and Cal33 cell lines. Using a SQ20B tumor-bearing mouse model, combination of GBNs with 10Gy irradiation significantly delayed tumor growth with an increase in late apoptosis and a decrease in cell proliferation. These results suggest that GBNs could be envisioned as adjuvant to radiotherapy for HNSCC tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2014.06.013DOI Listing

Publication Analysis

Top Keywords

photon irradiation
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8
fadu cal33
8
cal33 cell
8
cell lines
8
cell proliferation
8
late apoptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!