The epithelial lining of the intestine forms a barrier that separates the intestinal lumen from the host's internal milieu and is critical for fluid and electrolyte secretion and nutrient absorption. In the early 1990s, my laboratory discovered that intestinal epithelial cells could alter their phenotype and produce proinflammatory chemokines and cytokines when stimulated by pathogenic enteric luminal microbes or proinflammatory agonists produced by cells in the underlying mucosa. It is now well accepted that intestinal epithelial cells can be induced to express and secrete specific arrays of cytokines, chemokines, and antimicrobial defense molecules. The coordinated release of molecules by intestinal epithelial cells is crucial for activating intestinal mucosal inflammatory responses as well as mucosal innate and adaptive immune responses. More recent studies have focused on the intestinal epithelial signaling pathways that culminate in immune activation as well as the role of these pathways in host defense, mucosal injury, mucosal wound healing, and tumorigenesis. The emerging picture indicates that intestinal epithelial cells represent an integral component of a highly regulated communications network that can transmit essential signals to cells in the underlying intestinal mucosa, and that intestinal epithelial cells, in turn, serve as targets of mucosal mediators. These signals are essential for maintaining intestinal mucosal defense and homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071395PMC
http://dx.doi.org/10.1172/JCI75225DOI Listing

Publication Analysis

Top Keywords

intestinal epithelial
24
epithelial cells
20
intestinal
11
integral component
8
communications network
8
cells underlying
8
intestinal mucosal
8
epithelial
7
cells
7
mucosal
6

Similar Publications

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks.

View Article and Find Full Text PDF

Aspartate Metabolism-Driven Gut Microbiota Dynamics and RIP-Dependent Mitochondrial Function Counteract Oxidative Stress.

Adv Sci (Weinh)

January 2025

Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis.

View Article and Find Full Text PDF

Curcuminoids, found in turmeric ( L.), include curcumin (CUR), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although CUR and DMC are well-studied, the anti-inflammatory effects of BDMC remain less explored.

View Article and Find Full Text PDF

Background And Aims: Protein tyrosine phosphatase non-receptor type 23 (PTPN23) regulates the internalization of growth factor receptors such as the epithelial growth factor receptor (EGFR). Given the crucial function of such receptors in intestinal epithelial cells (IECs), we assessed the involvement of PTPN23 in intestinal homeostasis and epithelial proliferation.

Methods: We generated mouse models with constitutive (PTPN23fl/flVilCre+/-) or inducible (PTPN23fl/flVilCreERT+/-) deletion of PTPN23 in IEC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!