Vancomycin is a glycopeptide antibiotic used for the treatment of Gram-positive bacterial infections. Traditionally, it has been used as a drug of last resort; however, clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) strains with decreased susceptibility to vancomycin (vancomycin intermediate-resistant S. aureus [VISA]) and more recently with high-level vancomycin resistance (vancomycin-resistant S. aureus [VRSA]) have been described in the clinical literature. The rare VRSA strains carry transposon Tn1546, acquired from vancomycin-resistant Enterococcus faecalis, which is known to alter cell wall structure and metabolism, but the resistance mechanisms in VISA isolates are less well defined. Herein, we review selected mechanistic aspects of resistance in VISA and summarize biochemical studies on cell wall synthesis in a VRSA strain. Finally, we recapitulate a model that integrates common mechanistic features of VRSA and VISA strains and is consistent with the mode of action of vancomycin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071404PMC
http://dx.doi.org/10.1172/JCI68834DOI Listing

Publication Analysis

Top Keywords

vancomycin resistance
8
staphylococcus aureus
8
cell wall
8
vancomycin
5
mechanisms vancomycin
4
resistance
4
resistance staphylococcus
4
aureus
4
aureus vancomycin
4
vancomycin glycopeptide
4

Similar Publications

Mechanisms and implications of antibiotic resistance in gram-positive bacterial strains.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Antibiotics play a fundamental role in protecting millions of lives from infectious diseases. However, an important drawback of antibiotic treatment is that each advancement was followed by the development of resistance. This is due to the fact that the majority of pathogenic bacteria are capable of becoming resistant to a number of antimicrobial agents.

View Article and Find Full Text PDF

The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 11 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics.

View Article and Find Full Text PDF

Detection methods for carbapenem-resistant Pseudomonas aeruginosa in surface water and wastewater.

Sci Total Environ

January 2025

National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Biotechnology, Technical University Delft, Delft, the Netherlands. Electronic address:

Water systems can act as an important reservoir for Pseudomonas aeruginosa, which can pose public health risks during human contact. Carbapenem resistance is one of the most concerning resistances in P. aeruginosa making it a high-priority pathogen according to the World Health Organization (WHO), due to its ability to cause difficult-to-treat infections.

View Article and Find Full Text PDF

Background: Streptococcus suis (S. suis) is a major swine pathogen and a significant zoonotic agent, causing substantial economic losses in the swine sector and having considerable public health importance. The control and management of S.

View Article and Find Full Text PDF

Aims: Enterococcus faecium is one of the most important opportunistic pathogens threatening human health worldwide. Resistance to vancomycin (VAN) is increasing at an alarming rate. Resurrecting antibiotics using a combination approach is a promising alternative avenue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!