AI Article Synopsis

  • The study evaluated various plant and algae lectins for their ability to inhibit the growth of certain bacteria and yeast, including Staphylococcus aureus and Candida albicans.
  • Five lectins were found to show effective antimicrobial properties against at least one tested microorganism.
  • The research suggests that these lectins could be potential natural alternatives to traditional antimicrobial agents, but more research is needed to fully understand their effectiveness and applications.

Article Abstract

This study aimed to evaluate the abilities of plant and algae lectins to inhibit planktonic growth and biofilm formation in bacteria and yeasts. Initially, ten lectins were tested on Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella oxytoca, Pseudomonas aeruginosa, Candida albicans, and C. tropicalis at concentrations of 31.25 to 250  μ g/mL. The lectins from Cratylia floribunda (CFL), Vatairea macrocarpa (VML), Bauhinia bauhinioides (BBL), Bryothamnion seaforthii (BSL), and Hypnea musciformis (HML) showed activities against at least one microorganism. Biofilm formation in the presence of the lectins was also evaluated; after 24 h of incubation with the lectins, the biofilms were analyzed by quantifying the biomass (by crystal violet staining) and by enumerating the viable cells (colony-forming units). The lectins reduced the biofilm biomass and/or the number of viable cells to differing degrees depending on the microorganism tested, demonstrating the different characteristics of the lectins. These findings indicate that the lectins tested in this study may be natural alternative antimicrobial agents; however, further studies are required to better elucidate the functional use of these proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058506PMC
http://dx.doi.org/10.1155/2014/365272DOI Listing

Publication Analysis

Top Keywords

biofilm formation
12
lectins
9
planktonic growth
8
growth biofilm
8
bacteria yeasts
8
lectins tested
8
viable cells
8
algae plant
4
plant lectins
4
lectins planktonic
4

Similar Publications

Cyanobacteria and Chloroflexota cooperate to structure light-responsive biofilms.

Proc Natl Acad Sci U S A

February 2025

Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA 94305.

Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).

View Article and Find Full Text PDF

Arsenic-resistant Klebsiella oxytoca strain AT-02 was isolated from the ground water of the Multan region of Pakistan. The strain displayed high arsenite and arsenate resistance as minimal inhibitory concentration (MIC) was 600ppm and 10,000ppm respectively. The high tolerance of the isolated strain towards arsenate can be postulated due to significant increase in biofilm in response to arsenate.

View Article and Find Full Text PDF

Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, 's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence activity with its critical role in bacterial stress responses. Our findings reveal that is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions.

View Article and Find Full Text PDF

Biofilm formation by the plant growth promoting bacterium Bacillus cereus (EB-40).

Braz J Microbiol

January 2025

Programa de Pós-Graduação em Produção Vegetal no Semiárido, Universidade Estadual de Montes Claros, Rua Reinaldo Viana, 2650, Janaúba, MG, 39400-000, Brazil.

The objective of this work was to investigate the biofilm production capacity of the isolate EB-40 (Bacillus cereus) in a culture medium for the multiplication of microorganisms and in roots of in vitro grown banana explants. It was observed that the isolate was able to produce biofilms in tryptone, soy and agar (TSA) culture medium and in the roots of explants. The format, architecture and location of the biofilms in TSA culture medium presented an exopolymer matrix formed by EB-40 presented coccoid bacillary cells and fibrillar structures.

View Article and Find Full Text PDF

The high-osmolarity glycerol (HOG) pathway in .

mBio

January 2025

University of Angers, Brest University, IRF, SFR ICAT, Angers, France.

The emerging fungal pathogen is known for its strong skin tropism and resilience against antifungal and disinfection treatment, posing a significant challenge for healthcare units. Although efforts to identify the effectors of its unique pathogenic behavior have been insightful, the role of the high-osmolarity glycerol (HOG) pathway in this context remains unexplored. The study by Shivarathri and co-workers (R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!