The macula of the primate retina uniquely concentrates high amounts of the xanthophyll carotenoids lutein, zeaxanthin, and meso-zeaxanthin, but the underlying biochemical mechanisms for this spatial- and species-specific localization have not been fully elucidated. For example, despite abundant retinal levels in mice and primates of a binding protein for zeaxanthin and meso-zeaxanthin, the pi isoform of glutathione S-transferase (GSTP1), only human and monkey retinas naturally contain detectable levels of these carotenoids. We therefore investigated whether or not differences in expression, localization, and activity between mouse and primate carotenoid metabolic enzymes could account for this species-specific difference in retinal accumulation. We focused on β,β-carotene-9',10'-dioxygenase (BCO2, also known as BCDO2), the only known mammalian xanthophyll cleavage enzyme. RT-PCR, Western blot analysis, and immunohistochemistry (IHC) confirmed that BCO2 is expressed in both mouse and primate retinas. Cotransfection of expression plasmids of human or mouse BCO2 into Escherichia coli strains engineered to produce zeaxanthin demonstrated that only mouse BCO2 is an active zeaxanthin cleavage enzyme. Surface plasmon resonance (SPR) binding studies showed that the binding affinities between human BCO2 and lutein, zeaxanthin, and meso-zeaxanthin are 10- to 40-fold weaker than those for mouse BCO2, implying that ineffective capture of carotenoids by human BCO2 prevents cleavage of xanthophyll carotenoids. Moreover, BCO2 knockout mice, unlike WT mice, accumulate zeaxanthin in their retinas. Our results provide a novel explanation for how primates uniquely concentrate xanthophyll carotenoids at high levels in retinal tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104844 | PMC |
http://dx.doi.org/10.1073/pnas.1402526111 | DOI Listing |
Photosynth Res
January 2025
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia, 119991.
The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.
View Article and Find Full Text PDFArch Microbiol
January 2025
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.
View Article and Find Full Text PDFMar Drugs
January 2025
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy.
In recent years, the invasive Atlantic blue crab () has increased its spread throughout the Mediterranean Sea, threatening native biodiversity and local economies. This study aimed to valorize sampled in Sicily by utilizing its exoskeleton as a source of chitosan, astaxanthin, and bio-phenolic compounds. These biomolecules were evaluated for their reducing, radical scavenging, and antitumor activity.
View Article and Find Full Text PDFMar Drugs
January 2025
ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia.
Squid viscera, a byproduct of squid processing, contains oil rich in omega-3 fatty acids (up to 10% by mass) and the antioxidant astaxanthin. However, its high free fatty acid (FFA) content compromises stability. To address this, pilot-scale (200 L) enzymatic re-esterification of squid oil using immobilized lipase (Lipozyme RMIM) was demonstrated, resulting in high acylglyceride yields.
View Article and Find Full Text PDFMar Drugs
December 2024
College of Life Sciences, Qingdao University, Qingdao 266071, China.
Metabolic syndrome (MS) represents a complex cluster of metabolic disorders primarily characterized by obesity, insulin resistance, hyperglycemia, dyslipidemia, hypertension, and hyperuricemia. Diet and functional ingredients play a pivotal role in seeking non-pharmacological strategies to prevent and ameliorate MS. Astaxanthin (AST), a carotenoid found in various marine organisms, exhibits exceptional antioxidant properties and holds great promise as a natural compound that improves MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!