Various band structure engineering methods have been studied to improve the performance of graphitic transparent conductors; however, none has demonstrated an increase of optical transmittance in the visible range. Here we measure in situ optical transmittance spectra and electrical transport properties of ultrathin graphite (3-60 graphene layers) simultaneously during electrochemical lithiation/delithiation. On intercalation, we observe an increase of both optical transmittance (up to twofold) and electrical conductivity (up to two orders of magnitude), strikingly different from other materials. Transmission as high as 91.7% with a sheet resistance of 3.0 Ω per square is achieved for 19-layer LiC6, which corresponds to a figure of merit σ(dc)/σ(opt) = 1,400, significantly higher than any other continuous transparent electrodes. The unconventional modification of ultrathin graphite optoelectronic properties is explained by the suppression of interband optical transitions and a small intraband Drude conductivity near the interband edge. Our techniques enable investigation of other aspects of intercalation in nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms5224 | DOI Listing |
J Prosthodont
January 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Purpose: Ultra-high translucency zirconia (UT-Zr) is known for its high esthetic quality; however, its inert surface results in low hydrophilicity and surface energy (SE). To address this limitation, this study proposes an innovative zirconia heat treatment process (ZHTP) and aims to evaluate the effects of ZHTP on the surface characteristics of UT-Zr, offering a novel and practical approach for surface pretreatment in dental practice.
Material And Methods: The plate-shaped UT-Zr samples were fabricated.
Carbohydr Polym
March 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:
Cellulose nanocrystals (CNCs) are powerful biosourced nanomaterials for the construction of chiral photonic films. While various techniques have been used to enrich the optical properties of such systems, surface roughness engineering has yet to be exploited to significantly modify their optical properties. In this work, by using vacuum filtration-assisted self-assembly, CNCs are densely packed into films with high optical transparency.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China. Electronic address:
Manufacturing water-stable carboxymethyl cellulose (CMC) films as an alternative to commercial plastics is a promising solution to address plastic pollution. In this study, waste walnut shell (WS) was used as a natural lignocellulosic filler, glycerol as a plasticizer, and citric acid (CA) as a crosslinking agent for preparing high-performance CMC-based bioplastics through a one-pot casting method. When WS content was 12 wt%, the obtained CWGA-12 after optimization exhibited excellent mechanical properties (tensile strength ≈18.
View Article and Find Full Text PDFCornea
January 2025
Chongqing Eye and Vision Care Hospital Aier Eye Hospital Group, Yu Zhong, Chongqing, China.
Purpose: A detailed study of the physicochemical properties of SMILE-derived lenticules and evaluation of their drug delivery after loading with silver nanoparticles (AgNPs).
Methods: The lenticules were decellularized and modified with crosslinking concentrations of 0.01 (0.
Anal Chem
January 2025
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-41061, United States.
Glow discharge optical emission spectrometry (GDOES) allows fast and simultaneous multielemental analysis directly from solids and depth profiling down to the nanometer scale, which is critical for thin-film (TF) characterization. Nevertheless, operating conditions for the best limits of detection (LODs) are compromised in lieu of the best sputtering crater shapes for depth resolution. In addition, the fast transient signals from ultra-TFs do not permit the optimal sampling statistics of bulk analysis such that LODs are further compromised.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!