Activating internal tandem duplication (ITD) mutations in the fms-like tyrosine kinase 3 (FLT3) gene (FLT3-ITD) are associated with poor outcome in acute myeloid leukemia, but their prognostic impact in acute promyelocytic leukemia (APL) remains controversial. Here, we screened for FLT3-ITD mutations in 171 APL patients, treated with all-trans retinoic acid (ATRA) and anthracycline-based chemotherapy. We identified FLT3-ITD mutations in 35 patients (20 %). FLT3-ITD mutations were associated with higher white blood cell counts (P < 0.0001), relapse-risk score (P = 0.0007), higher hemoglobin levels (P = 0.0004), higher frequency of the microgranular morphology (M3v) subtype (P = 0.03), and the short PML/RARA (BCR3) isoform (P < 0.0001). After a median follow-up of 38 months, FLT3-ITD(positive) patients had a lower 3-year overall survival rate (62 %) compared with FLT3-ITD(negative) patients (82 %) (P = 0.006). The prognostic impact of FLT3-ITD on survival was retained in multivariable analysis (hazard ratio: 2.39, 95 % confidence interval [CI] 1.17-4.89; P = 0.017). Nevertheless, complete remission (P = 0.07), disease-free survival (P = 0.24), and the cumulative incidence of relapse (P = 0.94) rates were not significantly different between groups. We can conclude that FLT3-ITD mutations are associated with several hematologic features in APL, in particular with high white blood cell counts. In addition, FLT3-ITD may independently predict a shorter survival in patients with APL treated with ATRA and anthracycline-based chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00277-014-2142-9 | DOI Listing |
Front Oncol
December 2024
Department of Hematology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, China.
Acute myeloid leukemia (AML), which is most common in adults, is a challenging hematological malignancy. The occurrence and the progression of AML are often accompanied by various gene fusions and/or mutations. Herein, we report the first case of a fusion transcript with a translocation of (1;12)(q25;p13) in AML progressed from myelodysplastic syndrome (MDS) combined with an -ITD (internal tandem duplication) mutation.
View Article and Find Full Text PDFExpert Opin Ther Pat
December 2024
Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
Introduction: Approximately one-third of all AML patients have a mutation in the Fms-like tyrosine kinase 3 () gene, which is associated with a poor prognosis in these individuals. The 2017 approval of midostaurin, the first FLT3 inhibitor, spurred extensive development of more potent and selective inhibitors with an improved safety profile.
Areas Covered: This review analyzes patent inventions for the treatment of AML using FLT3 inhibitors, covering developments from the earliest to the most recent, disclosed in 2024.
Eur J Med Chem
December 2024
Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China. Electronic address:
FMS-like tyrosine receptor kinase 3 (FLT3) mutations, the most common genetic alterations found in acute myeloid leukemia (AML) patients, have been pursued as an ideal drug discovery target for the AML therapy. Taking compound 2 as lead, a series of pyridine derivatives bearing 1,2,3-triazole moiety were rationally designed and synthesized. The bioassays confirmed that these derivatives exerted potent antileukemia effects, and compound 12y was found to be the most potent one.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.
Background: The genetic and epigenetic alterations observed in acute myeloid leukemia (AML) contribute to its heterogeneity, influencing disease progression response to therapy, and patient outcomes. The use of antisense oligonucleotides (ASOs) technology allows for the design of oligonucleotide inhibitors based on gene sequence information alone, enabling precise targeting of key molecular pathways or specific genes implicated in AML.
Methods And Results: Midostaurin, a FLT3 specific inhibitor and ASOs targeting particular genes, exons, or mutations was conducted using AML models.
Cancers (Basel)
November 2024
Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain.
Background/objectives: Patients with relapsed/refractory (R/R) AML with mutation () have a dismal prognosis. offers a target for therapy in these patients. Gilteritinib (gilter) and quizartinib (quizar) have demonstrated efficacy as single agents in two phase 3 clinical trials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!