Aim: Boron nitride nanotubes (BNNTs) are tubular nanoparticles with a structure analogous to that of carbon nanotubes, but with B and N atoms that completely replace the C atoms. Many favorable results indicate BNNTs as safe nanomaterials; however, important concerns have recently been raised about ultra-pure, long (~10 µm) BNNTs tested on several cell types.
Materials & Methods: Here, we propose additional experiments with the same BNNTs, but shortened (~1.5 µm) with a homogenization/sonication treatment that allows for their dispersion in gum Arabic aqueous solutions. Obtained BNNTs are tested on human endothelial and neuron-like cells with several independent biocompatibility assays. Moreover, for the first time, their strong sum-frequency generation signal is exploited to assess the cellular uptake.
Results & Conclusion: Our data demonstrate no toxic effects up to concentrations of 20 µg/ml, once more confirming biosafety of BNNTs, and again highlighting that nanoparticle aspect ratio plays a key role in the biocompatibility evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm.14.25 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!