Yeast as a budding technology in target validation.

Drug Discov Today Technol

Exelixis, Inc, 170 Harbor Way, P.O. Box 511, South San Francisco, CA 94083-0511, USA. Electronic

Published: October 2004

Yeast biology has yielded major insights into fundamental cellular biology and has served as a remarkable platform for technical innovation. We review how these resources can be applied to the validation of mammalian or anti-fungal drug targets. These approaches range from elucidating synergistic interactions between drugs and targets to facile methods for tracking proteins in the cell or characterization of receptor biology. We also discuss web-based resources that integrate the extensive biochemical, cell biological, and genetic literature exploring the basic biology of these model eukaryotic cells.:

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ddtec.2004.09.002DOI Listing

Publication Analysis

Top Keywords

yeast budding
4
budding technology
4
technology target
4
target validation
4
validation yeast
4
biology
4
yeast biology
4
biology yielded
4
yielded major
4
major insights
4

Similar Publications

Microtubule plus-end tracking proteins (+TIPs) participate in nearly all microtubule-based cellular processes and have recently been proposed to function as liquid condensates. However, their formation and internal organization remain poorly understood. Here, we have study the phase separation of Bik1, a CLIP-170 family member and key +TIP involved in budding yeast cell division.

View Article and Find Full Text PDF

Advanced Peptide Nanozymes with Dual Antifungal Mechanisms: Cutting-Edge Innovations in Combatting Antimicrobial Resistance.

Curr Microbiol

January 2025

Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, Tamil Nadu, 600 077, India.

This letter commends the recent innovative research findings on "Dual-Action Antifungal Peptide Nanozymes: A Novel Approach to Combatting Antimicrobial Resistance." The study introduces a pioneering method to address antimicrobial resistance by developing peptide nanozymes that mimic antimicrobial peptides and enzymes through de novo design and peptide assembly. The heptapeptide IHIHICI, designed using AlphaFold2 and molecular dynamics simulations, exhibits high stability and dual antifungal actions, effectively killing over 90% of Candida albicans within 10 min.

View Article and Find Full Text PDF

Oxygen availability is a key factor in the evolution of multicellularity, as larger and more sophisticated organisms often require mechanisms allowing efficient oxygen delivery to their tissues. One such mechanism is the presence of oxygen-binding proteins, such as globins and hemerythrins, which arose in the ancestor of bilaterian animals. Despite their importance, the precise mechanisms by which oxygen-binding proteins influenced the early stages of multicellular evolution under varying environmental oxygen levels are not yet clear.

View Article and Find Full Text PDF

Cloning and functional characterization of sesquiterpene synthase genes from Inonotus obliquus using a Saccharomyces cerevisiae expression system.

World J Microbiol Biotechnol

January 2025

Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.

Inonotus obliquus (Chaga mushroom) is a large medicinal and edible fungus that contains a wealth of bioactive terpenoids. However, the detection of certain low-abundance sesquiterpenoids remains a challenge due to limitations in extraction and analytical techniques. Furthermore, the synthase genes responsible for the biosynthesis of the identified terpenoids have not yet been clearly elucidated.

View Article and Find Full Text PDF

Cdr1 in focus: a personal reflection on multidrug transporter research.

FEMS Yeast Res

January 2025

Amity Institute of Integrative Science and Health, Amity University Haryana, Gurugram, 122413, India.

Drug resistance mechanisms in human pathogenic Candida species are constantly evolving. Over time, these species have developed diverse strategies to counter the effects of various drug classes, making them a significant threat to human health. In addition to well-known mechanisms such as drug target modification, overexpression, and chromosome duplication, Candida species have also developed permeability barriers to antifungal drugs through reduced drug import or increased efflux.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!