The phosphatidylinositol 3-kinase (PI3K)/Akt pathway integrates environmental clues to regulate cell growth and survival. We showed previously that depriving cells of a single essential amino acid rapidly and reversibly arrests purine synthesis. Here we demonstrate that amino acids via mammalian target of rapamycin 2 and IκB kinase regulate Akt activity and Akt association and phosphorylation of transketolase (TKT), a key enzyme of the nonoxidative pentose phosphate pathway (PPP). Akt phosphorylates TKT on Thr382, markedly enhancing enzyme activity and increasing carbon flow through the nonoxidative PPP, thereby increasing purine synthesis. Mice fed a lysine-deficient diet for 2 days show decreased Akt activity, TKT activity, and purine synthesis in multiple organs. These results provide a mechanism whereby Akt coordinates amino acid availability with glucose utilization, purine synthesis, and RNA and DNA synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104231PMC
http://dx.doi.org/10.1016/j.molcel.2014.05.028DOI Listing

Publication Analysis

Top Keywords

purine synthesis
20
amino acid
12
akt activity
8
akt
6
synthesis
6
purine
5
akt phosphorylation
4
phosphorylation regulation
4
regulation transketolase
4
transketolase nodal
4

Similar Publications

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Background: Understanding the impact of caffeine intake on body composition is a topic of growing research interest. The article "Association Between Caffeine Intake and Fat-Free Mass Index: A Retrospective Cohort Study" by Tian et al. explored this relationship, highlighting a positive correlation between caffeine consumption and fat-free mass index (FFMI).

View Article and Find Full Text PDF

Risk of myocardial infarction and heart failure in gout patients: a systematic review and meta-analysis.

J Cardiothorac Surg

January 2025

Department of General Internal Medicine, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310023, China.

Background: Gout is a metabolic disease caused by decreased blood uric acid excretion and purine metabolism disorders. Long-term and persistent metabolic dysfunction gradually affects other organ functions and is the main factor inducing Myocardial Infarction (MI) and Heart Failure (HF), seriously affecting the health of patients. This study adopts a meta-analysis to analyze the risk of MI and HF in gout patients.

View Article and Find Full Text PDF

The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!