The limiting step for biosynthesis of 3-hydroxypropionic acid (3-HP) in Klebsiella pneumoniae is the conversion of 3-hydroxypropionaldehyde (3-HPA) to 3-HP. This reaction is catalyzed by aldehyde dehydrogenase (ALDH) with NAD(+) as a cofactor. Although NAD(+)-dependent ALDH overexpression facilitates 3-HP biosynthesis, ALDH activity decreases and 3-HP stops accumulation when NAD(+) is exhausted. Here, we show that an NAD(+)-independent aldehyde oxidase (AOX) from Pseudomonas sp. AIU 362 holds promise for cofactor-balanced 3-HP production in K. pneumoniae. The AOX coding gene, alod, was heterologously expressed in E. coli and K. pneumoniae, and their respective crude cell extracts showed 38.1 U/mg and 16.6 U/mg activities toward propionaldehyde. The recombinant K. pneumoniae expressing alod showed 13.7 U/mg activity toward 3-HPA; K m and V max were 6.7 mM and 42 μM/min/mg, respectively. In shake-flask cultures, the recombinant K. pneumoniae strain produced 0.89 g 3-HP/l, twice that of the control. Moreover, it produced 3 g 3-HP/l during 24 h fed-batch cultivation in a 5 l bioreactor. The results indicate that AOX can efficiently convert 3-HPA into 3-HP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10529-014-1590-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!