Ischemic heart disease is associated with inflammation, interstitial fibrosis and ventricular dysfunction prior to the development of heart failure. Endocannabinoids and the cannabinoid receptor CB2 have been claimed to be involved, but their potential role in cardioprotection is not well understood. We therefore explored the role of the cannabinoid receptor CB2 during the initial phase of ischemic cardiomyopathy development prior to the onset of ventricular dysfunction or infarction. Wild type and CB2-deficient mice underwent daily brief, repetitive ischemia and reperfusion (I/R) episodes leading to ischemic cardiomyopathy. The relevance of the endocannabinoid-CB2 receptor axis was underscored by the finding that CB2 was upregulated in ischemic wild type cardiomyocytes and that anandamide level was transiently increased during I/R. CB2-deficient mice showed an increased rate of apoptosis, irreversible loss of cardiomyocytes and persistent left ventricular dysfunction 60 days after the injury, whereas wild type mice presented neither morphological nor functional defects. These defects were due to lack of cardiomyocyte protection mechanisms, as CB2-deficient hearts were in contrast to controls unable to induce switch in myosin heavy chain isoforms, antioxidative enzymes and chemokine CCL2 during repetitive I/R. In addition, a prolonged inflammatory response and adverse myocardial remodeling were found in CB2-deficient hearts because of postponed activation of the M2a macrophage subpopulation. Therefore, the endocannabinoid-CB2 receptor axis plays a key role in cardioprotection during the initial phase of ischemic cardiomyopathy development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00395-014-0425-xDOI Listing

Publication Analysis

Top Keywords

endocannabinoid-cb2 receptor
12
receptor axis
12
ventricular dysfunction
12
ischemic cardiomyopathy
12
wild type
12
ischemic heart
8
cannabinoid receptor
8
receptor cb2
8
role cardioprotection
8
initial phase
8

Similar Publications

Background: Neurogenic meningeal inflammation is regarded as a key driver of migraine headache. Multiple evidence show importance of inflammatory processes in the dura mater for pain generation but contribution of the leptomeninges is less clear. We assessed effects of cortical spreading depolarization (CSD), the pathophysiological mechanism of migraine aura, on expression of inflammatory mediators in the leptomeninges.

View Article and Find Full Text PDF

Atherosclerosis and its major acute complications, myocardial infarction and stroke, are the leading causes of death and morbidity worldwide. Despite major advances in cardiovascular intervention and healthcare, improving preventive care and treatment remains a continuous mission for cardiovascular research. Within the last 10 to 15 years, the endocannabinoid system has emerged as an important lipid signaling system involved in many biological processes.

View Article and Find Full Text PDF

Ischemic heart disease is associated with inflammation, interstitial fibrosis and ventricular dysfunction prior to the development of heart failure. Endocannabinoids and the cannabinoid receptor CB2 have been claimed to be involved, but their potential role in cardioprotection is not well understood. We therefore explored the role of the cannabinoid receptor CB2 during the initial phase of ischemic cardiomyopathy development prior to the onset of ventricular dysfunction or infarction.

View Article and Find Full Text PDF

The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2(-/-) (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2(+/+) and J20 CNR2(-/-) mice.

View Article and Find Full Text PDF

The endocannabinoid CB₂ receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB₂ receptor system on AD pathology, a colony of mice with a deleted CB₂ receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB₂ receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2⁻/⁻ (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2⁺/⁺ and J20 CNR2⁻/⁻ mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!