Bioelectricity production from soil using microbial fuel cells.

Appl Biochem Biotechnol

Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708, Lublin, Poland,

Published: August 2014

Microbial fuel cells (MFCs) are a device using microorganisms as biocatalysts for transforming chemical energy into bioelectricity. As soil is an environment with the highest number of microorganisms and diversity, we hypothesized that it should have the potential for energy generation. The soil used for the study was Mollic Gleysol collected from the surface layer (0-20 cm). Four combinations of soil MFC differing from each other in humidity (full water holding capacity [WHC] and flooding) and the carbon source (glucose and straw) were constructed. Voltage (mV) and current intensity (μA) produced by the MFCs were recorded every day or at 2-day intervals. The fastest and the most effective MFCs in voltage generation (372.2 ± 5 mV) were those constructed on the basis of glucose (MFC-G). The efficiency of straw MFCs (MFC-S) was noticeable after 2 weeks (319.3 ± 4 mV). Maximal power density (P max = 32 mW m(-2)) was achieved by the MFC-G at current density (CD) of 100 mA m(-2). Much lower values of P max (10.6-10.8 mW m(-2)) were noted in the MFC-S at CD of ca. 60-80 mA m(-2). Consequently, soil has potential for production of renewable energy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-014-1034-8DOI Listing

Publication Analysis

Top Keywords

microbial fuel
8
fuel cells
8
soil
5
bioelectricity production
4
production soil
4
soil microbial
4
cells microbial
4
mfcs
4
cells mfcs
4
mfcs device
4

Similar Publications

Efficient nitrate removal via microorganism-iron oxide co-evolution on biocathode surface.

Bioelectrochemistry

December 2024

School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China. Electronic address:

Sediment microbial fuel cell (SMFC) is a device for biological denitrification, in which electrons produced by sediment microorganisms can be transferred to the upper layer of the water column lacking electron donors. However, the low efficiency of denitrifying bacteria in acquiring electrons and enriching at the cathode greatly hinders the application of SMFC for nitrogen removal. In this study, we report a novel method of constructing a high-performance biocathode by modifying electrodes with zero-valent iron to enhance the enrichment and electron transfer of electroactive bacteria.

View Article and Find Full Text PDF

Antimicrobial Responses to Bacterial Metabolic Activity and Biofilm Formation Studied Using Microbial Fuel Cell-Based Biosensors.

Biosensors (Basel)

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China.

Simultaneous monitoring of antimicrobial responses to bacterial metabolic activity and biofilm formation is critical for efficient screening of new anti-biofilm drugs. A microbial fuel cell-based biosensor using as an electricigen was constructed. The effects of silver nanoparticles (AgNPs) on the cellular metabolic activity and biofilm formation of in the biosensors were investigated and compared with the traditional biofilm detection method.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) are a candidate for green energy sources due to microbes' ability to generate charge in their metabolic processes. The main problem in MFCs is slow charge transfer between microorganisms and electrodes. Several methods to improve charge transfer have been used until now: modification of microorganisms by conductive polymers, use of lipophilic mediators, and conductive nanomaterials.

View Article and Find Full Text PDF

Genome assembly and annotation of microalga C018.

Microbiol Resour Announc

December 2024

Marine Laboratory, Duke University, Beaufort, North Carolina, USA.

The microalga is an important organism for algae-based biocommodity production of food, feed, and fuel, among other products. Using PacBio Revio, we sequenced, assembled, and annotated a 26.41 Mbp C018 genome.

View Article and Find Full Text PDF

Polyethylene Terephthalate (PET) is a petroleum-based plastic polymer that, by design, can last decades, if not hundreds of years, when released into the environment through plastic waste leakage. In the pursuit of sustainable solutions to plastic waste recycling and repurposing, the enzymatic depolymerization of PET has emerged as a promising green alternative. However, the metabolic potential of the resulting PET breakdown molecules, such as the two-carbon (C2) molecule ethylene glycol (EG), remains largely untapped.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!