Synthesis of N-aryl substituted, five- and six-membered azacycles using aluminum-amide complexes.

Chem Commun (Camb)

Department of Life Chemistry, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk 712-702, South Korea.

Published: August 2014

Synthesis of N-aryl substituted, five- and six-membered azacycloalkanes, isoindolines and tetrahydroisoquinolines, has been described. In this synthesis, cyclic ethers (n = 1, 2) were treated with dimethylaluminum-amide reagents, derived from a range of aryl amines and trimethylaluminum, to afford the corresponding azacycles in good yields.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc04111aDOI Listing

Publication Analysis

Top Keywords

synthesis n-aryl
8
n-aryl substituted
8
substituted five-
8
five- six-membered
8
six-membered azacycles
4
azacycles aluminum-amide
4
aluminum-amide complexes
4
complexes synthesis
4
six-membered azacycloalkanes
4
azacycloalkanes isoindolines
4

Similar Publications

Collaborative Reduction-Induced Nickel-Catalytic Selective C-S Coupling of Aryl Di/Trithiosulfonates with Aryl Halides.

Org Lett

December 2024

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.

Metal-catalytic conversion of polysulfide reagents is a major challenge in organic synthesis due to its challenging activation modes of multiple S-S bonds. The utilization of aryl di- and trithiosulfonates in nickel-catalyzed reductive coupling with aryl halides has been unexplored. Herein, we unprecedentedly describe PPh and Zn-collaborative reduction-induced nickel-catalytic selective C-S coupling of aryl di/trithiosulfonates with aryl halides to access sulfides over common disulfides or trisulfides.

View Article and Find Full Text PDF

Synthesis and in vitro leishmanicidal activity of novel N-arylspermidine derivatives.

Bioorg Chem

December 2024

Universidad de Buenos Aires, CONICET, Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina. Electronic address:

This work describes the synthesis and biological evaluation of hitherto unknown N-arylspermidine derivatives 3. Compounds 3 were efficiently prepared from cyclic amidines through a novel synthetic approach comprising alkylation with ω-halonitriles followed by reduction. The cyclic N-arylamidine directs the alkylation to the unsubstituted nitrogen and also provides the N-benzyl group present in the triamine after simultaneous reduction of the resulting quaternary salt 2 and the cyano group.

View Article and Find Full Text PDF

Structure-based development of N-Arylindole derivatives as Pks13 inhibitors against Mycobacterium tuberculosis.

Eur J Med Chem

February 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China. Electronic address:

Targeting the biosynthetic pathway of mycolic acid is highly attractive to researchers in the field of novel anti-tubercular drug development. Pks13-TE is an essential catalytic component in the last assembling step of mycolic acid, and the co-crystal structures of the Pks13-TE-inhibitor complex provide insight into ligand recognition. Based on a structure-guided strategy, N-aryl indole derivatives were designed, synthesized, and evaluated for their antitubercular activities.

View Article and Find Full Text PDF

The C-H arylation of 2-quinolinecarboxyamide bearing a C-Br bond at the -aryl moiety is carried out with a palladium catalyst. The reaction proceeds at the C-H bond on the pyridine ring adjacent to the amide group in the presence of 10 mol % Pd(OAc) at 110 °C to afford the cyclized product in 42% yield. The yield is improved to 94% when the reaction is performed with PPh as a ligand of palladium.

View Article and Find Full Text PDF

We present a highly selective protocol for the benzylation of -aryl amides. This method offers mild conditions, excellent site specificity, and scalability, enabling the synthesis of diarylmethane amides and dibenzoazepines. The protocol allows for one-pot diagonal dibenzylation of dianilides, creating valuable precursors for pharmaceutically active compounds and addressing limitations in current direct C-H activation methodologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!