Background: A large number of studies have contributed to understanding the general mechanisms driving ovarian folliculogenesis in humans and show a complex endocrine dialog between the central nervous system, the pituitary and the ovary, integrated by various intraovarian paracrine messages. The role of intraovarian paracrine regulation has acquired more relevance in the recent years owing to the discovery of previously unknown factors, such as the oocyte-derived bone morphogenetic protein (BMP)15.
Methods: A thorough literature search was carried out in order to summarize what has been reported so far on the role of BMP15, and the BMP15 paralog, growth and differentiation factor 9 (GDF9), in ovarian function and female fertility. Research articles published in English until March 2014 were included.
Results: The biological actions of BMP15 include: (i) the promotion of follicle growth and maturation starting from the primary gonadotrophin-independent phases of folliculogenesis; (ii) the regulation of follicular granulosa cell (GC) sensitivity to FSH action and the determination of ovulation quota; (iii) the prevention of GC apoptosis and (iv) the promotion of oocyte developmental competence. The existence of biologically active heterodimers with GDF9, and/or the synergistic co-operation of BMP15 and GDF9 homodimers are indeed relevant in this context. Experimental disruption of the bmp15 gene in mice resulted in a mild fertility defect limited to females, whereas natural missense mutations in ewes cause variable phenotypes (ranging from hyperprolificacy to complete sterility) depending on a fine gene dosage mechanism also involving GDF9. Strong evidence supports the concept that such a mechanism plays an important role in the regulation of ovulation rate across mammalian and non-mammalian species. Following the discovery of sheep fecundity genes, several research groups have focused on alterations in human BMP15 associated with primary ovarian insufficiency (POI) or polycystic ovary syndrome. Several variants of BMP15 are significantly associated with POI supporting their pathogenic role, but the underlying biological mechanism is still under investigation and of great interest in medicine. BMP15 maps to the Xp locus involved in the determination of the ovarian defect in Turner syndrome and significantly contributes to the determination of ovarian reserve. Pioneering studies in women undergoing controlled ovarian stimulation indicate that BMP15 may represent a marker of ovarian response or oocyte quality.
Conclusions: BMP15, an oocyte-derived growth and differentiation factor, is a critical regulator of folliculogenesis and GC activities. Variations in BMP15 gene dosage have a relevant influence on ovarian function and can account for several defects of female fertility. The modulation of BMP15 action may have interesting pharmacological perspectives and the analysis of BMP15 may become a useful marker in IVF procedures. Recent outcomes indicate that the close interactions of BMP15/GDF9 have a critical biological impact that should be taken into account in future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humupd/dmu036 | DOI Listing |
Zygote
December 2024
Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
Treatment with follicle-stimulating hormone (FSH) and testosterone (T2) and their combination have been observed to be influential on ovarian follicles of 1-day-old mice ovaries cultured for 8 days. Given that extension of the culture period could positively impact the development of follicles in cultured ovaries, the present study was conducted to evaluate the main and interaction effects of FSH by T2 on the development of ovarian follicles in 1-day-old mice ovaries cultured for 12 days. One-day-old mice ovaries were initially cultured with base medium for 4 days; thereafter, different hormonal treatments were added to the culture media, and the culture was continued for 8 additional days until day 12.
View Article and Find Full Text PDFTheriogenology
March 2025
Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain. Electronic address:
Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both.
View Article and Find Full Text PDFCells
November 2024
IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel.
This prospective, case-control study evaluated the impact of obesity on oocyte quality based on mtDNA expression in cumulus cells (CC), and on bone morphogenetic protein 15 (BMP-15) and heparan sulfate proteoglycan 2 (HSPG2) in follicular fluid (FF). It included women 18 to <40 years of age, divided according to BMI < 24.9 (Group 1, n = 28) and BMI > 25 (Group 2, n = 22).
View Article and Find Full Text PDFAnim Biotechnol
November 2024
Tianzhu County Animal Husbandry Technology Extension Station, Wuwei, Gansu, China.
Since most yaks have a long postpartum anestrus period, postpartum anestrus is the main factor affecting the reproductive efficiency of yaks. In this study, the third-generation sequencing technology was used to successfully screen differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) in the ovarian tissues of yaks during estrus and anestrus. The functional references of DEGs and DETs were Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Genes database.
View Article and Find Full Text PDFAnim Reprod Sci
December 2024
Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
Litter size is a key trait in livestock breeding. The BMP15 and KISS1 genes have been studied in goats, but results on their association with litter size are inconsistent. The objective of this study was to employ a meta-analysis approach to investigate the genetic relationship between the BMP15 (g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!