Neurocomputational models hold that sparse distributed coding is the most efficient way for hippocampal neurons to encode episodic memories rapidly. We investigated the representation of episodic memory in hippocampal neurons of nine epilepsy patients undergoing intracranial monitoring as they discriminated between recently studied words (targets) and new words (foils) on a recognition test. On average, single units and multiunits exhibited higher spike counts in response to targets relative to foils, and the size of this effect correlated with behavioral performance. Further analyses of the spike-count distributions revealed that (i) a small percentage of recorded neurons responded to any one target and (ii) a small percentage of targets elicited a strong response in any one neuron. These findings are consistent with the idea that in the human hippocampus episodic memory is supported by a sparse distributed neural code.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084456PMC
http://dx.doi.org/10.1073/pnas.1408365111DOI Listing

Publication Analysis

Top Keywords

sparse distributed
12
episodic memory
12
distributed coding
8
human hippocampus
8
hippocampal neurons
8
small percentage
8
episodic
4
coding episodic
4
neurons
4
memory neurons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!