To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076256PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100399PLOS

Publication Analysis

Top Keywords

swing-leg trajectory
28
guinea fowl
24
disturbance rejection
24
running guinea
12
leg loading
12
steady gait
12
terrain drop
12
swing-leg
8
trajectory running
8
uneven terrain
8

Similar Publications

Daily living activities present a diverse array of task and environmental constraints, highlighting the critical role of adapting gait initiation (GI) for an individual's quality of life. This study investigated the effects of GI directions, obstacle negotiation, and leg dominance on anticipatory postural adjustments and stepping kinematics. Fourteen active, young, healthy individuals participated in GI across 4 directions-forward, medial 45°, lateral 45°, and lateral 90°-with variations in obstacle presence and leg dominance.

View Article and Find Full Text PDF

Sedentary behaviour has been associated with an increased risk of falls among older adults. Although gait initiation (GI) is a promising tool used to assess fall risk, it has yet to be quantitatively evaluated for dynamic stability in sedentary populations. Tai Chi exercise is believed to be effective in preventing falls in older adults, but its effect on GI stability has not been quantified.

View Article and Find Full Text PDF

Balancing is a fundamental task in the motion control of bipedal robots. Compared to two-foot balancing, one-foot balancing introduces new challenges, such as a smaller supporting polygon and control difficulty coming from the kinematic coupling between the center of mass (CoM) and the swinging leg. Although nonlinear model predictive control (NMPC) may solve this problem, it is not feasible to implement it on the actual robot because of its large amount of calculation.

View Article and Find Full Text PDF

Validation of Balance Map Analysis of Walking at Different Speeds.

Appl Bionics Biomech

March 2022

Department of Mechanical Engineering, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan.

Walking balance about falling in the forward direction is associated with the body's center of mass and placement of the swing foot during the swing phase. Balance map analysis evaluates walking balance based on the prediction of the reachability of an appropriate foot placement using a simple biomechanical model during the swing phase without active joint torque (ballistic walking model). The ballistic walking model can be justified in terms of the preferred walking speed because the metabolic energy consumption associated with muscle activity in faster and slower walking is higher than that in preferred speed walking.

View Article and Find Full Text PDF

Can foot placement during gait be trained? Adaptations in stability control when ankle moments are constrained.

J Biomech

March 2022

Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Institute of Brain and Behavior Amsterdam, the Netherlands. Electronic address:

Accurate coordination of mediolateral foot placement, relative to the center of mass kinematic state, is one of the mechanisms which ensures mediolateral stability during human walking. Previously, we found that shoes constraining ankle moments decreased the degree of foot placement control with respect to the center of mass kinematic state. As such, ankle moment constraints can be seen as a perturbation of foot placement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!