Although fermentable carbohydrates (CHO) can reduce metabolites derived from dietary protein fermentation in the intestine of pigs, the interaction between site of fermentation and substrate availability along the gut is still unclear. The current study aimed at determining the impact of two different sources of carbohydrates in diets with low or very high protein content on microbial metabolite profiles along the gastrointestinal tract of piglets. Thirty-six piglets (n = 6 per group) were fed diets high (26%, HP) or low (18%, LP) in dietary protein and with or without two different sources of carbohydrates (12% sugar beet pulp, SBP, or 8% lignocellulose, LNC) in a 2 × 3 factorial design. After 3 weeks, contents from stomach, jejunum, ileum, caecum, proximal and distal colon were taken and analysed for major bacterial metabolites (D-lactate, L-lactate, short chain fatty acids, ammonia, amines, phenols and indols). Results indicate considerable fermentation of CHO and protein already in the stomach. HP diets increased the formation of ammonia, amines, phenolic and indolic compounds throughout the different parts of the intestine with most pronounced effects in the distal colon. Dietary SBP inclusion in LP diets favoured the formation of cadaverine in the proximal parts of the intestine. SBP mainly increased CHO-derived metabolites such as SCFA and lactate and decreased protein-derived metabolites in the large intestine. Based on metabolite profiles, LNC was partly fermented in the distal large intestine and reduced mainly phenols, indols and cadaverine, but not ammonia. Multivariate analysis confirmed more diet-specific metabolite patterns in the stomach, whereas the CHO addition was the main determinant in the caecum and proximal colon. The protein level mainly influenced the metabolite patterns in the distal colon. The results confirm the importance of CHO source to influence the formation of metabolites derived from protein fermentation along the intestinal tract of the pig.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1745039X.2014.932962DOI Listing

Publication Analysis

Top Keywords

dietary protein
12
distal colon
12
protein content
8
gastrointestinal tract
8
metabolites derived
8
protein fermentation
8
sources carbohydrates
8
metabolite profiles
8
caecum proximal
8
ammonia amines
8

Similar Publications

Dietary protein is a key regulator of healthy aging in both mice and humans. In mice, reducing dietary levels of the branched-chain amino acids (BCAAs) recapitulates many of the benefits of a low protein diet; BCAA-restricted diets extend lifespan, reduce frailty, and improve metabolic health, while BCAA supplementation shortens lifespan, promotes obesity, and impairs glycemic control. Recently, high protein diets have been shown to promote cellular senescence, a hallmark of aging implicated in many age-related diseases, in the liver of mice.

View Article and Find Full Text PDF

Unlabelled: Experimental studies have demonstrated that nutritional changes during development can result in phenotypic changes to mammalian cheek teeth. This developmental plasticity of tooth morphology is an example of phenotypic plasticity. Because tooth development occurs through complex interactions between manifold processes, there are many potential mechanisms which can contribute to a tooth's norm of reaction.

View Article and Find Full Text PDF

As natural furocoumarins, psoralen and its isomer isopsoralen are widely distributed in various fruits including L., vegetables including celery, and medicinal herbs including L. Although psoralen and isopsoralen have been used as dietary supplements because of their bioactivities such as antibacterial and anti-inflammatory properties; however, the potential mechanisms underlying the antioxidant activities of these two furocoumarins still need to be explored.

View Article and Find Full Text PDF

Sulforaphane acutely activates multiple starvation response pathways.

Front Nutr

January 2025

Aging and Metabolism Research Program, Oklahoma City, OK, United States.

Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.

View Article and Find Full Text PDF

Role of nutrition in diabetes mellitus and infections.

World J Clin Cases

January 2025

Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China.

In this editorial, we have commented on the article that has been published in the recent issue of . The authors have described a case of unilateral thyroid cyst and have opined that the acute onset of infection may be linked to diabetes mellitus (DM). We have focused on the role of nutrition in the association between DM and infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!