The influence of various polar solvent additives with different dipole moments has been investigated since the performance of a photovoltaic device comprising a donor-acceptor copolymer (benzothiadiazole-fluorene-diketopyrrolopyrrole (BTD-F-DKPP)) and phenyl-C60-butyric acid methyl ester (PCBM) was notably increased. A common approach for controlling bulk heterojunction morphology and thereby improving the solar cell performance involves the use of solvent additives exhibiting boiling points higher than that of the surrounding solvent in order to allow the fullerene to aggregate during the host solvent evaporation and film solidification. In contrast to that, we report the application of polar solvent additives with widely varied dipole moments, where intentionally no dependence on their boiling points was applied. We found that an appropriate amount of the additive can improve all solar cell parameters. This beneficial effect could be largely attributed to a modification of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-active layer interface within the device layer stack, which was successfully reproduced for polymer solar cells based on the commonly used PCDTBT (poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)]) copolymer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am503284bDOI Listing

Publication Analysis

Top Keywords

solvent additives
16
solar cells
8
polar solvent
8
dipole moments
8
solar cell
8
boiling points
8
solvent
6
modification active
4
active layer/pedotpss
4
layer/pedotpss interface
4

Similar Publications

All-solid-state (ASS) batteries are a promising solution to achieve carbon neutrality. ASS lithium-sulfur (Li-S) batteries stand out due to their improved safety, achieved by replacing organic solvents, which are prone to leakage and fire, with solid electrolytes. In addition, these batteries offer the benefits of higher capacity and the absence of rare metals.

View Article and Find Full Text PDF

Herein, we report a Cu-DTBP-catalyzed [3 + 2] cycloaddition reaction between 1-(2-oxo-2-phenylethyl)--indole-3-aldehyde and arylalkene, using DMF as the solvent. Under relatively mild reaction conditions, a series of indole compounds were synthesized in moderate yields (up to 73%). This protocol features good functional group tolerance and high atom economy.

View Article and Find Full Text PDF

Selective Hydrogen Isotope Exchange Catalysed by Simple Alkali-Metal Bases in DMSO.

Angew Chem Int Ed Engl

January 2025

Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.

Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.

View Article and Find Full Text PDF

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

Insights on the role of cryoprotectants in enhancing the properties of bioinks required for cryobioprinting of biological constructs.

J Mater Sci Mater Med

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.

Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!