Elevated expression of IL-23/IL-17 pathway-related mediators correlates with exacerbation of pulmonary inflammation during polymicrobial sepsis.

Shock

*Department of Surgery, School of Medicine and †Initiative for Maximizing Student Development Program, ‡Center for Investigations of Health and Educational Disparities, University of California San Diego, La Jolla, California.

Published: September 2014

Sepsis is a leading cause of death in the United States, claiming more than 215,000 lives every year. A primary condition observed in septic patients is the incidence of acute respiratory distress syndrome, which is characterized by the infiltration of neutrophils into the lung. Prior studies have shown differences in pulmonary neutrophil accumulation in C57BL/6J (B6) and A/J mice after endotoxic and septic shock. However, the mechanism by which neutrophils accumulate in the lung after polymicrobial sepsis induced by cecal ligation and puncture still remains to be fully elucidated. We show in this study that lung inflammation, characterized by neutrophil infiltration and expression of inflammatory cytokines, was aggravated in B6 as compared with A/J mice and correlated with a high expression of p19, the interleukin 23 (IL-23)-specific subunit. Furthermore, lipopolysaccharide stimulation of B6- and A/J-derived macrophages, one of the main producers of IL-23 and IL-12, revealed that B6 mice favored the production of IL-23, whereas A/J-derived macrophages expressed higher levels of IL-12. In addition, expression of IL-17, known to be upregulated by IL-23, was also more elevated in the lung of B6 mice when compared with that in the lung of A/J mice. In contrast, pulmonary expression of interferon-γ was much more pronounced in A/J than that in B6 mice, which was most likely a result of a higher production of IL-12. The expression of the IL-17-dependent neutrophil recruitment factors chemokine (CXC motif) ligand 2 and granulocyte colony-stimulating factor was also higher in B6 mice. Altogether, these results suggest that increased activation of the IL-23/IL-17 pathway has detrimental effects on sepsis-induced lung inflammation, whereas activation of the IL-12/interferon-γ pathway may lead, in contrast, to less pronounced inflammatory events. These two pathways may become possible therapeutic targets for the treatment of sepsis-induced acute respiratory distress syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134380PMC
http://dx.doi.org/10.1097/SHK.0000000000000207DOI Listing

Publication Analysis

Top Keywords

a/j mice
16
polymicrobial sepsis
8
acute respiratory
8
respiratory distress
8
distress syndrome
8
lung inflammation
8
a/j-derived macrophages
8
mice
7
lung
6
expression
5

Similar Publications

Experimental study on the preventive effect of Anemarrhena rhizome on pregnancy loss and the incidence rate of cleft palate in A/J mice.

Congenit Anom (Kyoto)

January 2025

Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.

Pregnancy loss is a significant concern worldwide, encompassing miscarriage and stillbirth. Miscarriage, defined as the loss of a baby before 28 weeks of gestation, accounts for approximately 15% of pregnancies. Stillbirth, occurring at or after 28 weeks of gestation, affects nearly 2.

View Article and Find Full Text PDF

Hypersensitivity pneumonitis (HP), including pigeon breeder's lung (PBL), often progresses from acute inflammation to fibrosis, impairing lung function and limiting targeted therapeutic strategies. Mechanistic studies on PBL progression are limited by the lack of preclinical animal models and a predominant focus on patient data. This study explores the immunopathological characteristics of all stages of PBL in mice and evaluates the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) during the non-fibrotic stage.

View Article and Find Full Text PDF

Gut Microbiota Metabolites Sensed by Host GPR41/43 Protect Against Hypertension.

Circ Res

January 2025

Hypertension Research Laboratory, School of Biological Sciences (R.R.M., T.Z., E.D., L.X., A.B.-W., H.A.J., M.N., M.P., K.C.L., W.Q., J.A.O.D., F.Z.M.).

Background: Fermentation of dietary fiber by the gut microbiota leads to the production of metabolites called short-chain fatty acids, which lower blood pressure and exert cardioprotective effects. Short-chain fatty acids activate host signaling responses via the functionally redundant receptors GPR41 and GPR43, which are highly expressed by immune cells. Whether and how these receptors protect against hypertension or mediate the cardioprotective effects of dietary fiber remains unknown.

View Article and Find Full Text PDF

Background: Age is the principal risk factor for neurodegeneration in both the retina and brain. The retina and brain share many biological properties; thus, insights into retinal aging and degeneration may shed light onto similar processes in the brain. Genetic makeup strongly influences susceptibility to age-related retinal disease.

View Article and Find Full Text PDF

Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!