Invasive basal cell carcinoma in a xeroderma pigmentosum patient: facing secondary and tertiary aggressive recurrences.

J Craniofac Surg

From the *Department of Plastic and Reconstructive Surgery, University Hospital Gregorio Marañon, Madrid, Spain; and †Military Medical Academy, Sofia, Bulgaria.

Published: July 2014

Xeroderma pigmentosum (XP) is characterized by photohypersensitivity of sun-exposed tissues and several thousand-fold increased risk of developing malignant neoplasms of the skin and eyes. Inherited molecular defects in nucleotide excision repair genes cause the autosomal recessive condition XP. A 56-year-old woman with XP presented with an extensive multirecurrence basal cell carcinoma in the left naso-orbital region. At the time of the first visit, the patient had already received several interventions with local reconstructive techniques, a full course of radiotherapy, and bilateral neck dissection. A large tumor resection and free flap reconstruction were performed. Three years 9 months afterward, an aggressive recurrence occurred, and a second resection was needed. A new free flap was transferred, and microvascular anastomoses were done to the pedicle of the previously transferred flap. Nine months later, the patient returned with frontal bone tumoral lesions, and third microsurgical intervention was done. At that time, the reconstruction was practiced by a composite chimeric flap with a rib portion. Its pedicle was anastomosed to the one of the second free flaps. The objective of this article was to report the authors' experience concerning a unique case of XP requiring a complex reconstruction of the anterior skull base. Xeroderma pigmentosum patients need an early diagnosis and removal of cutaneous tumor lesions as some of them behave aggressively, especially those affecting the face. Free flaps are good solutions for reconstruction and should proceed from non-sun-exposed areas of the body. If reconstructed areas are highly radiated and/or skin tumors affect deep anatomical areas, complications are frequent.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SCS.0000000000000596DOI Listing

Publication Analysis

Top Keywords

xeroderma pigmentosum
12
basal cell
8
cell carcinoma
8
free flap
8
free flaps
8
invasive basal
4
carcinoma xeroderma
4
pigmentosum patient
4
patient facing
4
facing secondary
4

Similar Publications

A 5-year-old male with xeroderma pigmentosum from Honduras presented with a rapidly growing mass on the left post-auricular neck, associated with left-sided hearing loss. MRI revealed a large mass with invasion of the external auditory canal, temporal bone, and metastasis to lymph nodes. Biopsy confirmed moderately differentiated squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic lesion. We know very well the kinetics of induction and repair of different types of DNA damage in different organisms and cell lines.

View Article and Find Full Text PDF

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Beyond Nucleotide Excision Repair: The Importance of XPF in Base Excision Repair and Its Impact on Cancer, Inflammation, and Aging.

Int J Mol Sci

December 2024

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.

DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway.

View Article and Find Full Text PDF

Unveiling Secondary Mutations in Blended Phenotypes: Dual ERCC4 and OTOA Pathogenic Variants Through WES Analysis.

Int J Mol Sci

December 2024

Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy.

This study describes two siblings from consanguineous parents who exhibit intellectual disability, microcephaly, photosensitivity, bilateral sensorineural hearing loss, numerous freckles, and other clinical features that suggest a potential disruption of the nucleotide excision repair (NER) pathway. Whole exome sequencing (WES) identified a novel homozygous missense variant in the gene, which was predicted to be pathogenic. However, a subsequent peculiar audiometric finding prompted further investigation, revealing a homozygous deletion in the gene linked to neurosensorial hearing loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!