We experimentally demonstrate that a graded-index plastic optical fiber (GI POF) can significantly reduce reflection noise in a multimode fiber link with a vertical-cavity surface-emitting laser (VCSEL). By directly observing beams backreflected to the VCSEL, we show that the noise reduction effect is closely related to random mode coupling because of light scattering by microscopic heterogeneities in the GI POF core material. This suggests that intrinsic mode coupling can lower the self-coupling efficiency of the light backreflected to the VCSEL cavity through beam quality degradation. Using GI POFs, low-cost radio-over-fiber systems for indoor networks can be realized without optical isolators or fiber end-face polishing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.39.003662DOI Listing

Publication Analysis

Top Keywords

reflection noise
8
noise reduction
8
graded-index plastic
8
plastic optical
8
optical fiber
8
multimode fiber
8
fiber link
8
backreflected vcsel
8
mode coupling
8
fiber
5

Similar Publications

The fiber Bragg grating (FBG) is fabricated by the femtosecond laser writing technique with a plane-by-plane (Pl-by-Pl) method in the double-cladding fiber (DCF). The refractive index modified (RIM) region formed by this method is 12 μm × 8 μm in size. Due to the Pl-by-Pl method, high-order Bragg resonances with reflectance greater than 99% can be achieved.

View Article and Find Full Text PDF

This paper introduces an interferometer for single-shot areal quantitative phase imaging at two wavelengths simultaneously, suitable for use with low coherence sources. It operates in reflection geometry with on-axis illumination, so that it can be conveniently applied to surface texture measurements. The system consists of two identical 4f systems forming the reference and sample arm.

View Article and Find Full Text PDF

The acoustic signals generated during the laser paint removal process contain valuable information that reflects the state of paint removal. However, it is often overshadowed by complex environmental noise, posing significant challenges for real-time monitoring of paint removal based on acoustic signals. This paper introduces a real-time acoustic monitoring method for laser paint removal using deep learning techniques for the first time.

View Article and Find Full Text PDF

This paper presents an adaptive fast Fourier transform (adaptive FFT) demodulation scheme, aimed at enhancing the precision and noise suppression capability of signal processing in fiber-optic interferometric sensors. By adaptively optimizing the length of the acquired spectrum and dynamically adjusting the frequency domain resolution, the proposed scheme can precisely calculate the eigenfrequency of the reflected spectrum. Therefore, the adaptive FFT demodulation scheme can effectively enhance the extraction ability of phase quadrature demodulation signal.

View Article and Find Full Text PDF

We demonstrate a wide-tunable random fiber laser (RFL) with narrow linewidth and low noise. The tunable RFL is achieved by combining random feedback from a disordered fiber Bragg grating array (FBGA) with a broad scattering wavelength range and the gain from an erbium-doped fiber (EDF) with a broad amplification wavelength range. The disordered FBGA is fabricated using a femtosecond laser direct writing technique by varying the random distances and grating periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!