In this work, we demonstrate all-electronically tunable terahertz quantum cascade lasers (THz QCLs) with MEMS tuner structures. A two-stage MEMS tuner device is fabricated by a commercial open-foundry process performed by the company MEMSCAP. This provides an inexpensive, rapid, and reliable approach for MEMS tuner fabrication for THz QCLs with a high-precision alignment scheme. In order to electronically actuate the MEMS tuner device, an open-loop cryogenic piezo nanopositioning stage is integrated with the device chip. Our experimental result shows that at least 240 GHz of single-mode continuous electronic tuning can be achieved in cryogenic environments (∼4 K) without mode hopping. This provides an important step toward realizing turn-key bench-top tunable THz coherent sources for spectroscopic and coherent tomography applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.39.003480 | DOI Listing |
In this work, we demonstrate all-electronically tunable terahertz quantum cascade lasers (THz QCLs) with MEMS tuner structures. A two-stage MEMS tuner device is fabricated by a commercial open-foundry process performed by the company MEMSCAP. This provides an inexpensive, rapid, and reliable approach for MEMS tuner fabrication for THz QCLs with a high-precision alignment scheme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!