We report, to our knowledge for the first time, the experimental implementation of a quick response (QR) code as a "container" in an optical encryption system. A joint transform correlator architecture in an interferometric configuration is chosen as the experimental scheme. As the implementation is not possible in a single step, a multiplexing procedure to encrypt the QR code of the original information is applied. Once the QR code is correctly decrypted, the speckle noise present in the recovered QR code is eliminated by a simple digital procedure. Finally, the original information is retrieved completely free of any kind of degradation after reading the QR code. Additionally, we propose and implement a new protocol in which the reception of the encrypted QR code and its decryption, the digital block processing, and the reading of the decrypted QR code are performed employing only one device (smartphone, tablet, or computer). The overall method probes to produce an outcome far more attractive to make the adoption of the technique a plausible option. Experimental results are presented to demonstrate the practicality of the proposed security system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.39.003074DOI Listing

Publication Analysis

Top Keywords

optical encryption
8
code
7
experimental
4
experimental code
4
code optical
4
encryption noise-free
4
noise-free data
4
data recovering
4
recovering report
4
report knowledge
4

Similar Publications

Long Persistent Luminescence in Cu-Doped SrGaGeO for Information Storage and Encryption.

Inorg Chem

January 2025

Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Information storage and encryption are the key technologies for modern information transmission. However, most optical information storage technologies based on long persistent luminescent (PersL) only have one fixed response mode, which is easy to imitate, limiting their security in advanced information storage and encryption applications. Besides, the cost of rare earth-doped PersL materials restricts their wide application.

View Article and Find Full Text PDF

All-Optical Single-Channel Plasmonic Logic Gates.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.

Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.

View Article and Find Full Text PDF

3D printing hydrogel with homogeneous structural color induced by ZnS colloidal spheres for customized multi-channel spatial information encryption.

J Colloid Interface Sci

January 2025

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, China. Electronic address:

The utilization of structural colors in 3D printing was anticipated due to their eco-friendliness and sustainability. However, the manufacturing of homogeneous structural colors with intricate 3D architectures remains a great challenge, particularly in hydrogels. Herein, we added 0.

View Article and Find Full Text PDF

Visible-Light-Driven Fluorescence Turn-on Photoswitches With Near Quantitative Photocyclization Yield.

Adv Sci (Weinh)

January 2025

School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, P. R. China.

Photoswitchable fluorescent materials have gained significant attention for their potential in advanced information encryption and anti-counterfeiting applications. However, the common use of UV light to trigger the isomerization processes leads to photobleaching and poor fatigue resistance. Visible-light-driven fluorescent photoswitches are highly desirable, but achieving high cyclization yield remains challenging.

View Article and Find Full Text PDF

Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!