Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Long-distance quantum communication relies on storing and retrieving photonic qubits in orthogonal field modes. The available degrees of freedom for photons are polarization, spatial-mode profile, and temporal/spectral profile. To date, methods exist for decomposing, manipulating, and analyzing photons into orthogonal polarization modes and spatial modes. Here we propose and theoretically verify the first highly efficient method to carry out analogous operations for temporally and spectrally overlapping, but field-orthogonal, temporal modes. The method relies on cascaded nonlinear-optical quantum frequency conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.39.002924 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!