Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present an integrated optical system for three-dimensional (3D) imaging of micrometer-sized samples, while immobilizing and manipulating the samples by means of an optical fiber trap. Optical traps allow us to apply and measure pico-Newton-sized forces, and perform detailed measurements of micrometer-sized dielectric systems in the field of biology. The integrated 3D system can be used as a major tool in the field of biophysics. The trap is built using a tapered optical fiber to enhance the effective numerical aperture of the fiber. The trapping system is mounted on a conventional microscope, in which the two eyepieces' output ports are used as the paths of an off-axis self-referencing digital holographic microscopy (DHM) setup. The trap is calibrated using a high-speed camera, and trap stiffness is determined through the power spectrum method. The compact setup provides an elegant apparatus for temporally stable DHM for 3D imaging of optically controlled samples. Three-dimensional information and quantitative phase contrast images of the trapped samples are obtained by postprocessing the recorded digital holograms. Experiments were performed on lipids and red blood cells. Quantitative phase contrast images and temporal evolution of optical thickness of trapped samples are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.39.002916 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!