For ∼30 million years, the eggs of Hawaiian Drosophila were laid in ever-changing environments caused by high rates of island formation. The associated diversification of the size and developmental rate of the syncytial fly embryo would have altered morphogenic gradients, thus necessitating frequent evolutionary compensation of transcriptional responses. We investigate the consequences these radiations had on transcriptional enhancers patterning the embryo to see whether their pattern of molecular evolution is different from non-Hawaiian species. We identify and functionally assay in transgenic D. melanogaster the Neurogenic Ectoderm Enhancers from two different Hawaiian Drosophila groups: (i) the picture wing group, and (ii) the modified mouthparts group. We find that the binding sites in this set of well-characterized enhancers are footprinted by diverse microsatellite repeat (MSR) sequences. We further show that Hawaiian embryonic enhancers in general are enriched in MSR relative to both Hawaiian non-embryonic enhancers and non-Hawaiian embryonic enhancers. We propose embryonic enhancers are sensitive to Activator spacing because they often serve as assembly scaffolds for the aggregation of transcription factor activator complexes. Furthermore, as most indels are produced by microsatellite repeat slippage, enhancers from Hawaiian Drosophila lineages, which experience dynamic evolutionary pressures, would become grossly enriched in MSR content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076327 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101177 | PLOS |
J Biol Chem
January 2025
Indiana University School of Medicine, Indianapolis, Indiana; IU Simon Comprehensive Cancer Center, Indianapolis, Indiana; R.L. Roudebush Indianapolis VA Medical Center, Indianapolis, Indiana. Electronic address:
The Hhex gene encodes a transcription factor that is important for both embryonic and post-natal development, especially of hematopoietic tissues. Hhex is one of the most common sites of retroviral integration in mouse models. We found the most common integrations in AKXD (recombinant inbred strains) T-ALLs occur 57-61kb 3' of Hhex and activate Hhex gene expression.
View Article and Find Full Text PDFTalanta
January 2025
Department of Laboratory Medicine, Taihe hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell research, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Clinical molecular diagnostic center, Taihe hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China. Electronic address:
Endothelial-to-mesenchymal transition (EndMT) plays a crucial role in the initiation and progression of atherosclerosis and various disease processes. Cluster of differentiation 31 (CD31) is a significant marker in EndMT. Detecting CD31 is essential for early-stage monitoring of EndMT and diagnosing atherosclerosis.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Barts Cancer Institute, Queen Mary University of London;
Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
The visible-light-driven O evolution on oxychloride photocatalysts, such as BiNbOCl, was significantly enhanced by stirring in an aqueous solution containing IrCl in the dark. Various characterizations indicated that highly dispersed IrOHCl-like species spontaneously formed on the oxychloride surface, serving as effective and stable cocatalysts for enhancing O evolution.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611-0910.
Pharmacological elevation of cyclic AMP (cAMP) of cultured cumulus-oocyte complexes (COC) before or coincident with initiation of maturation has been reported to improve outcomes for various systems for in vitro production of embryos. Here it was hypothesized that artificial elevation of cAMP in the oocyte for a 2-h period of prematuration would improve developmental competence of matured oocytes and result in increased blastocyst yield and altered expression of genes important for embryonic differentiation. Treated COC were cultured for 2 h with dibutyryl cAMP (dbcAMP), a membrane-permeable form of cAMP, and 3-isobutyl-1-methylxanthine (IBMX), which inhibits phosphodiesterases that convert cAMP to ATP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!