A metasurface consisting of an infinite array of square loops was designed for maximal absorptivity for s-polarized light at a wavelength of 10.6 µm and 60 degrees off-normal. We investigate the effects of array truncation in finite arrays of this design using far-field FTIR spectroscopy and scattering scanning near-field optical microscopy. The far-field spectra are observed to blue-shift with decreasing array size. The near-field images show a corresponding decrease in uniformity of the local electric field amplitude and phase spatial distributions. Simulations of the far-field absorption spectra and local electric field are consistent with the measured results.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.016645DOI Listing

Publication Analysis

Top Keywords

array truncation
8
local electric
8
electric field
8
array
4
truncation effects
4
effects infrared
4
infrared frequency
4
frequency selective
4
selective surfaces
4
surfaces metasurface
4

Similar Publications

Introduction: Malaria remains a significant burden, and a fully protective vaccine against is critical for reducing morbidity and mortality. Antibody responses against the blood-stage antigen Merozoite Surface Protein 2 (MSP2) are associated with protection from malaria, but its extensive polymorphism is a barrier to its development as a vaccine candidate. New tools, such as long-read sequencing and accurate protein structure modelling allow us to study the genetic diversity and immune responses towards antigens from clinical isolates with unprecedented detail.

View Article and Find Full Text PDF

The ability of a surface to completely absorb a liquid droplet is an important property that can be controlled by geometrical structure and chemical composition of the surface. Here, using Laplace pressure and Gibbs free energy (GFE) considerations, a capped truncated microcone array geometry is proposed to obtain a near zero degree for contact angle (θ) of a water droplet. Our results showed that two essential conditions must be met to achieve a superabsorbent surface.

View Article and Find Full Text PDF

Hazard models are the most commonly used tool to analyze time-to-event data. If more than one time scale is relevant for the event under study, models are required that can incorporate the dependence of a hazard along two (or more) time scales. Such models should be flexible to capture the joint influence of several time scales, and nonparametric smoothing techniques are obvious candidates.

View Article and Find Full Text PDF

Bound states in the continuum are optical modes with extremely high-quality factors and narrow resonances, which exist in the dispersion spectrum of the radiative region above the light line. A unique bound state in the continuum is supported at the edge of truncated photonic crystals, which is a type of a Fabry-Pérot type bound state in the continuum, but has never been observed in experiments. Here, we demonstrate the bound states in the continuum supported at the edge array of silicon (Si) pillars whose diameter is bigger than that of the rest of a Si-pillar two-dimensional photonic crystal.

View Article and Find Full Text PDF

We demonstrate a bipartition technique using a superlattice architecture to access correlations between alternating planes of a mesoscopic array of spin-3 chromium atoms trapped in a 3D optical lattice. Using this method, we observe that out-of-equilibrium dynamics driven by long-range dipolar interactions lead to spin anticorrelations between the two spatially separated subsystems. Our bipartite measurements reveal a subtle interplay between the anisotropy of the 3D dipolar interactions and that of the lattice structure, without requiring single-site addressing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!