Cryopreserved red blood cells are superior to standard liquid red blood cells.

J Trauma Acute Care Surg

From the Oregon Health and Science University, Division of Trauma, Critical Care and Acute Care Surgery, Trauma Research Institute of Oregon (D.A.H., L.J.F., L.K., J.D., S.U., D.L., J.W., M.A.S.); and Portland State University (C.W.),Portland, Oregon.

Published: July 2014

Background: Liquid preserved packed red blood cell (LPRBC) transfusions are used to treat anemia and increase end-organ perfusion. Throughout their storage duration, LPRBCs undergo biochemical and structural changes collectively known as the storage lesion. These changes adversely affect perfusion and oxygen off-loading. Cryopreserved RBCs (CPRBC) can be stored for up to 10 years and potentially minimize the associated storage lesion. We hypothesized that CPRBCs maintain a superior biochemical profile compared with LPRBCs.

Methods: This was a prospective, randomized, double-blinded study. Adult trauma patients with an Injury Severity Score (ISS) greater than 4 and an anticipated 1-U to 2-U transfusion of PRBCs were eligible. Enrolled patients were randomized to receive either CPRBCs or LPRBCs. Serum proteins (haptoglobin, serum amyloid P, and C-reactive protein), proinflammatory and anti-inflammatory cytokines, d-dimer, nitric oxide, and 2,3-DPG concentrations were analyzed. Mann-Whitney U-test and Wilcoxon rank sum test were used to assess significance (p < 0.05).

Results: Fifty-seven patients were enrolled (CPRBC, n = 22; LPRBC, n = 35). The LPRBC group's final interleukin 8, tumor necrosis factor α, and d-dimer concentrations were elevated compared with their pretransfusion values (p < 0.05). After the second transfused units, 2,3-DPG was higher in the patients receiving CPRBCs (p < 0.05); this difference persisted throughout the study. Finally, serum protein concentrations were decreased in the transfused CPRBC units compared with LPRBC (p < 0.01).

Conclusion: CPRBC transfusions have a superior biochemical profile: an absent inflammatory response, attenuated fibrinolytic state, and increased 2,3-DPG. A blood banking system using both storage techniques will offer the highest-quality products to critically injured patients virtually independent of periodic changes in donor availability and transfusion needs.

Level Of Evidence: Therapeutic study, level II.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TA.0000000000000268DOI Listing

Publication Analysis

Top Keywords

red blood
12
blood cells
8
storage lesion
8
superior biochemical
8
biochemical profile
8
patients
5
cryopreserved red
4
blood
4
cells superior
4
superior standard
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!