We investigated liquid-sheet jets with controllable thickness for application to terahertz (THz) spectroscopy. Slit-type and colliding-jet nozzles were used to generate optically flat liquid jets. The thickness of the liquid sheet was determined precisely by spectral interference and THz time-domain-spectroscopy methods. By adjusting the collision angle of the colliding-jet nozzle, we could control the thickness of the liquid sheet from 50 to 120 μm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.014135 | DOI Listing |
In this paper, the design and implementation of a temperature-controlled recirculating flat jet system for liquid crystals (LCs)-based experiments are presented. In these experiments, the target liquid is usually exposed to medium to high laser fluences, possibly resonant with specific excitation, thus resulting in a change of local temperature and sudden degradation. To overcome this problem, each laser pulse must interact with a new volume of liquid, preferably with flat surfaces, while avoiding the use of substrates.
View Article and Find Full Text PDFIUCrJ
November 2023
Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden.
X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment.
View Article and Find Full Text PDFStruct Dyn
January 2022
GAP-Biophotonics, Université de Genève, 1205 Geneva, Switzerland.
Sub-m thin samples are essential for spectroscopic purposes. The development of flat micro-jets enabled novel spectroscopic and scattering methods for investigating molecular systems in the liquid phase. However, the temperature of these ultra-thin liquid sheets in vacuum has not been systematically investigated.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) combined with liquid jets was applied to the detection of trace sodium (Na) in aqueous solutions. The sensitivities of two types of liquid jets were compared: a liquid cylindrical jet with a diameter of 500 µm and a liquid sheet jet with a thickness of 20 µm. Compared with the cylindrical jet, the liquid sheet jet effectively reduced the splash from the laser-irradiated surface and produced long-lived luminous plasma.
View Article and Find Full Text PDFStruct Dyn
November 2020
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
Developing femtosecond resolution methods for directly observing structural dynamics is critical to understanding complex photochemical reaction mechanisms in solution. We have used two recent developments, ultrafast mega-electron-volt electron sources and vacuum compatible sub-micron thick liquid sheet jets, to enable liquid-phase ultrafast electron diffraction (LUED). We have demonstrated the viability of LUED by investigating the photodissociation of tri-iodide initiated with a 400 nm laser pulse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!