We investigated liquid-sheet jets with controllable thickness for application to terahertz (THz) spectroscopy. Slit-type and colliding-jet nozzles were used to generate optically flat liquid jets. The thickness of the liquid sheet was determined precisely by spectral interference and THz time-domain-spectroscopy methods. By adjusting the collision angle of the colliding-jet nozzle, we could control the thickness of the liquid sheet from 50 to 120 μm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.014135DOI Listing

Publication Analysis

Top Keywords

liquid-sheet jets
8
thickness liquid
8
liquid sheet
8
jets terahertz
4
terahertz spectroscopy
4
spectroscopy investigated
4
investigated liquid-sheet
4
jets controllable
4
controllable thickness
4
thickness application
4

Similar Publications

In this paper, the design and implementation of a temperature-controlled recirculating flat jet system for liquid crystals (LCs)-based experiments are presented. In these experiments, the target liquid is usually exposed to medium to high laser fluences, possibly resonant with specific excitation, thus resulting in a change of local temperature and sudden degradation. To overcome this problem, each laser pulse must interact with a new volume of liquid, preferably with flat surfaces, while avoiding the use of substrates.

View Article and Find Full Text PDF

3D-printed sheet jet for stable megahertz liquid sample delivery at X-ray free-electron lasers.

IUCrJ

November 2023

Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden.

X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment.

View Article and Find Full Text PDF

Sub-m thin samples are essential for spectroscopic purposes. The development of flat micro-jets enabled novel spectroscopic and scattering methods for investigating molecular systems in the liquid phase. However, the temperature of these ultra-thin liquid sheets in vacuum has not been systematically investigated.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) combined with liquid jets was applied to the detection of trace sodium (Na) in aqueous solutions. The sensitivities of two types of liquid jets were compared: a liquid cylindrical jet with a diameter of 500 µm and a liquid sheet jet with a thickness of 20 µm. Compared with the cylindrical jet, the liquid sheet jet effectively reduced the splash from the laser-irradiated surface and produced long-lived luminous plasma.

View Article and Find Full Text PDF

Developing femtosecond resolution methods for directly observing structural dynamics is critical to understanding complex photochemical reaction mechanisms in solution. We have used two recent developments, ultrafast mega-electron-volt electron sources and vacuum compatible sub-micron thick liquid sheet jets, to enable liquid-phase ultrafast electron diffraction (LUED). We have demonstrated the viability of LUED by investigating the photodissociation of tri-iodide initiated with a 400 nm laser pulse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!