Non-invasive and fully automated conductimetric measurements of electrolyte and bacterial samples were achieved in a closed volume test cell, comprising a magnetic field coil and detector. By monitoring field induced currents in sample electrolytes the magnitude of the sample current was shown to vary as the inverse of the sample impedance. The impedance characteristic was shown to be that of an LCR resonant circuit. This characteristic is primarily a function of the applied frequency and the solution/cell properties being dependent on the solution conductivity and dielectric permittivity at any given concentration. Small changes in sample dielectric permittivity in the presence of a large background conductivity are shown to be significant. The apparatus described can provide fixed or swept frequency conductivity measurements in the range 1 kHz to 2.25 MHz with a lower conductivity sensitivity of 0.9 x 10(-3) Scm-1. Bulk impedimetric characteristics of cell suspensions are derived by a two stage measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0265-928x(89)80025-2 | DOI Listing |
Rev Sci Instrum
January 2025
The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System, Luoyang 471004, China.
A multi-band high-sensitivity microwave sensor is reported. The two resonance units are based on complementary square spiral resonators (CSSRs) and produce four measurement bands through parasitic resonances. The four frequency bands are 2.
View Article and Find Full Text PDFDalton Trans
January 2025
Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama, 337-8570, Japan.
We successfully synthesized perovskite-type RbTaO at 1173 K under 4 GPa. RbTaO crystalized as a cubic system (3̄ space group (SG), = 4.04108(3) Å) at 300 K in contrast to the orthorhombic perovskite-type RbNbO prepared under the same conditions.
View Article and Find Full Text PDFThe ability to significantly enhance near-field coupling between light and matter at the nanoscale is crucial for advancing the fields of nanophotonics and nanopolariotonics. However, conventional probes face challenges in achieving optimal light-matter interaction. In this study, we propose a novel, to the best of our knowledge, simulation-based strategy that leverages tip engineering to dramatically amplify the scattering field through tailored double-layer geometries.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027 Zhejiang, China.
Chiral vortices and their phase transition in ferroelectric/dielectric heterostructures have drawn significant attention in the field of condensed matter. However, the dynamical origin of the chiral phase transition from achiral to chiral polar vortices has remained elusive. Here, we develop a phase-field perturbation model and discover the softening of out-of-plane vibration mode of polar vortices in [(PbTiO)/(SrTiO)] superlattices at a critical epitaxial strain or temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!