Ten infectious bursal disease virus (IBDV) field strains were isolated from 15 broiler flocks located in various parts of Asyut, Egypt. Seven strains were subjected to comparative sequencing and phylogenetic analyses to help provide optimal control program for protection against IBDV infection. Sequence analysis of a 530 bp hypervariable region in the VP2 gene revealed that the rate of identity and homology was around 95.6~99.1%. Sequence characterization revealed the 7 strains identified as vvIBDV with the four amino acids residues typical of vvIBDV (242I, 256I, 294I, 299S). The BURSA-VAC vaccine was the nearest vaccine in sequence similarity to the local examined IBDV strains followed by CEVACIBDL then Bursine plus and Nobilis Gumboro indicating its probable success in the face of incoming outbreaks when using these vaccines. Phylogenetic analysis revealed that the presence of three clusters for the examined strains and are grouped with reference very virulent IBDVs of European and Asian origin (Japanese and Hong Kong) strains suggesting the different ancestors of our isolates. The antigenic index showed a number of changes on the major and minor hydrophilic antigenic peaks of the virus surface structures indicating a new genetic evolution of the surface structure epitopes that may lead to vaccination failure and reemergence of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060563PMC
http://dx.doi.org/10.1155/2014/916412DOI Listing

Publication Analysis

Top Keywords

infectious bursal
8
bursal disease
8
strains
6
genetic characterization
4
characterization infectious
4
disease viruses
4
viruses associated
4
associated gumboro
4
gumboro outbreaks
4
outbreaks commercial
4

Similar Publications

Infectious Bursal Disease is a highly contagious, immunosuppressive viral disease of young chicks caused by the Infectious Bursal Disease Virus (IBDV). The study was carried out at the National Veterinary Institute (NVI) of Ethiopia to evaluate the competence of the DF-1 cell culture adapted vaccine strain of IBDV as a vaccine candidate. DF-1 cells at passage 27 confluent monolayer was infected with 1 ml of LC-75 vaccine strain virus by adsorption method and recorded as passage 1 (P).

View Article and Find Full Text PDF

Despite the significant growth in Sonali chicken production across Bangladesh, inadequate disease surveillance and control measures along with indiscriminate antimicrobial use remain major challenges to the sector. In this study, we evaluated the disease burden and antimicrobial prescription patterns of Sonali chickens in Bangladesh using a web-based data recording system from 2020 to 2021 and analyzed 1690 cases. The diagnoses recorded in the system were presumptive, as they were based on clinico-epidemiological history, clinical signs, and gross necropsy findings noted by registered veterinarians.

View Article and Find Full Text PDF

SRPK1 facilitates IBDV replication by phosphorylating VP1 at S48.

Int J Biol Macromol

December 2024

Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China; Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China. Electronic address:

Infectious Bursal Disease Virus (IBDV), a double-stranded RNA virus of the Avibirnavirus genus, causes significant vaccine failures in immunocompromised young poultry. The VP1 protein of IBDV undergoes post-translational modifications that are critical for viral RNA transcription, genome replication, and overall viral proliferation. Phosphorylation enhances the ability of the IBDV polymerase VP1 and facilitates viral replication, while the specific mechanisms underlying VP1 phosphorylation and its role in the IBDV life cycle remain largely unexplored.

View Article and Find Full Text PDF

Infectious bursal disease (IBDV) poses a significant threat to the global poultry industry and causes major economic losses. This study presents the genetic profile of IBDV strains emerging in Pakistan, focusing on the VP2 amino acid profile. The effects of these changes on disease transmission, vaccine effectiveness, and overall chicken health are concerning.

View Article and Find Full Text PDF

Serum metabolic alterations in chickens upon infectious bursal disease virus infection.

BMC Vet Res

December 2024

Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China.

Background: Infectious bursal disease virus (IBDV) is a highly contagious immunosuppressive virus of chickens. Chickens acquire infection by the oral route under natural conditions. Although the histological and pathological changes after IBDV infection are well described, the alterations in serum metabolome have not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!