The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, covering 26 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investigate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly related to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pair-wise comparison identifies at least 1,350 shared proteins, although less than half of these are found in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes. Further studies are required to unveil the evolutionary history of the Veillonella and other Negativicutes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062629 | PMC |
http://dx.doi.org/10.4056/sigs.2981345 | DOI Listing |
NPJ Regen Med
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
Gut microbiota affect transplantation outcomes; however, the influence of immunosuppression and cell therapy on the gut microbiota in cardiovascular care remains unexplored. We investigated gut microbiota dynamics in a nonhuman primate (NHP) cardiac ischemia/reperfusion model while under immunosuppression and receiving cell therapy with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (EC) and cardiomyocytes (CM). Both immunosuppression and EC/CM co-treatment increased gut microbiota alpha diversity.
View Article and Find Full Text PDFArch Oral Biol
November 2024
Pathology, Science in Microbiology, Oswaldo Cruz Institute, Brazil. Electronic address:
Objective: To provide a comprehensive summary of the available evidence on the oral microbiota of humans and non-human primates about the etiology of periodontal disease.
Design: An integrative literature review was conducted on 398 clinical and observational articles published between 2010 and 2024 using searches in the MEDLINE/PubMed, Virtual Health Library, and SciELO databases. After the screening, eligibility, data extraction, and methodological quality assessment, 21 studies were selected.
BMC Gastroenterol
January 2025
Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Objective: Summaries of the relationships between the microbiota and liver cirrhosis and their conclusions are not consistent. This study describes microbial differences in patients with liver cirrhosis by performing a meta-analysis.
Methods: We searched PubMed, Embase, Web of Science, and the Cochrane Library and collected related articles published before March 10, 2024.
Eur J Clin Invest
January 2025
Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland.
Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.
Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.
Cancers (Basel)
December 2024
Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
Background/objectives: Several independent studies have associated prostate cancer (PCa) with specific groups of bacteria, most of them reporting the presence of anaerobic or microaerophilic species such as (). Such findings suggest a prostate cancer-related bacterial dysbiosis, in a manner similar to the association between infection and gastric cancer. In an earlier exploratory study looking for such dysbiosis events, using a culturomics approach, we discovered that the presence of obligate anaerobes (OAs) along with was associated with increased prostate-specific antigen (PSA) levels in 39 participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!